首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We extend the quantal hypernetted-chain (QHNC) method, which has been proved to yield accurate results for liquid metals, to treat a partially ionized plasma. In a plasma, the electrons change from a quantum to a classical fluid gradually with increasing temperature; the QHNC method applied to the electron gas is in fact able to provide the electron-electron correlation at an arbitrary temperature. As an illustrating example of this approach, we investigate how liquid rubidium becomes a plasma by increasing the temperature from 0 to 30 eV at a fixed normal ion density 1.03x10(22)/cm(3). The electron-ion radial distribution function (RDF) in liquid Rb has distinct inner-core and outer-core parts. Even at a temperature of 1 eV, this clear distinction remains as a characteristic of a liquid metal. At a temperature of 3 eV, this distinction disappears, and rubidium becomes a plasma with the ionization 1.21. The temperature variations of bound levels in each ion and the average ionization are calculated in Rb plasmas at the same time. Using the density-functional theory, we also derive the Saha equation applicable even to a high-density plasma at low temperatures. The QHNC method provides a procedure to solve this Saha equation with ease by using a recursive formula; the charge population of differently ionized species are obtained in Rb plasmas at several temperatures. In this way, it is shown that, with the atomic number as the only input, the QHNC method produces the average ionization, the electron-ion and ion-ion RDF's, and the charge population that are consistent with the atomic structure of each ion for a partially ionized plasma.  相似文献   

2.
以铝镁合金作阴极,采用吸收光谱测定了辉光放电放电等离子体中镁离子和原子的相对密度。提出了在近似条件下,由镁离子和原子吸光度比法求算镁电离度的方法。探讨了电离对常规分析的干扰与校正,以及影响镁电离的因素。  相似文献   

3.
We demonstrate that interferometric probing with extreme ultraviolet (EUV) laser light enables determination of the degree of ionization of the "warm dense matter" produced between the critical and ablation surfaces of laser plasmas. Interferometry has been utilized to measure both transmission and phase information for an EUV laser beam at the photon energy of 58.5 eV, probing longitudinally through laser-irradiated plastic (parylene-N) targets (thickness 350 nm) irradiated by a 300 ps duration pulse of wavelength 438 nm and peak irradiance 10(12) W cm(-2). The transmission of the EUV probe beam provides a measure of the rate of target ablation, as ablated plasma becomes close to transparent when the photon energy is less than the ionization energy of the predominant ion species. We show that refractive indices η below the solid parylene N (η(solid) = 0.946) and expected plasma values are produced in the warm dense plasma created by laser irradiation due to bound-free absorption in C(+).  相似文献   

4.
We have developed a synchrotron-based, time-resolved x-ray microprobe to investigate optical strong-field processes at intermediate intensities (10(14) - 10(15) W/cm2). This quantum-state specific probe has enabled the direct observation of orbital alignment in the residual ion produced by strong-field ionization of krypton atoms via resonant, polarized x-ray absorption. We found strong alignment to persist for a period long compared to the spin-orbit coupling time scale (6.2 fs). The observed degree of alignment can be explained by models that incorporate spin-orbit coupling. The methodology is applicable to a wide range of problems.  相似文献   

5.
We have observed evidence of the emission of energetic He-and H-like ions of fluorine more than 1 MeV produced via the optical field ionization (OFI) from a solid target irradiated by an intense I=(2-4)x10(18) W/cm(2) (60 fs, lambda=800 nm), obliquely incident p-polarized pulse laser. The measured blue wing of He(alpha), He(beta), and Ly(alpha) lines of fluorine shows a feature of the Doppler-shifted spectrum due to the self-similar ion expansion dominated by superthermal electrons with the temperature T(h) approximately 100 keV. Using a collisional particle-in-cell simulation, which incorporates the nonlocal-thermodynamic-equilibrium ionization including OFI, we have obtained the plasma temperature, line shape, and maximal energy of accelerated ions, which agree well with those determined from the experimental spectra. The red wing of ion spectra gives the temperature of bulk plasma electrons.  相似文献   

6.
In Xe laser-produced-plasma sources of short-wave radiation, the laser-energy-to-EUV conversion efficiency (CE) proves substantially less than theoretical expectations. In the present work, a calculated estimate has been made which indicates that a long period of the primary ionization, lasting up to a moment when high-Z ions appear to emit short-wave photons, can be one of main causes for this. During that period the plasma remains low-ionized and absorbs weakly the laser energy. The estimate above has been experimentally confirmed with spectroscopic data and those on the effective ion charge derived from measured absorption of the laser radiation in the plasma. A preionization of the gas target with an ultraviolet (UV) excimer laser pulse is proposed as a method to accelerate the ionization process and consequently, to enhance CE.  相似文献   

7.
单次脉冲工作的真空弧离子源,采用金属钛吸附氢形成的Ti-H固溶体作阴极,生成的等离子体同时包含金属钛和氢的成分,且在径向、横向以及时间尺度上都存在梯度,整个体系处于非平衡状态,不能用一个统一的温度来描述。假设由电子组成的子系统和由其他重粒子组成的子系统分别达到平衡,即Ti-H等离子体由电子温度和重粒子温度两个温度来描述,为双温度等离子体。采用Culdberg-Waage解离方程和Saha电离方程分别对系统中的分子解离和原子电离过程进行描述,结合等离子体电荷准中性条件,同时引入原子发射光谱这一无干扰的等离子体诊断方法,对Ti-H等离子体的温度和粒子数密度进行诊断。在MATLAB环境下,同时考虑金属Ti原子和一价Ti离子的电离,计算结果显示:根据谱线的斯塔克展宽确定的电子密度进行计算,除重粒子温度和氢气分子的数密度之外,其他的参数均可得到较准确的诊断结果;电子密度数值的准确性对计算结果有很大的影响;如果能够在计算之前确定重粒子温度,则可对Ti-H等离子体的温度和粒子数密度进行准确的定量分析。  相似文献   

8.
We perform model calculations for the electrical and thermal conductivity of aluminium plasma within the generalized linear response method of Zubarev for temperatures of (5–25) eV and densities of (0.01–10) g/cm3. The composition in the expanded plasma region is determined by considering higher ionization states up to 5+ and solving the respective system of coupled mass action laws. Besides this chemical picture, a generalized Thomas‐Fermi model is applied to calculate the equation of state and the average charge state of the ions for densities near and above solid state density. Interactions between the various species are treated on T matrix level. Numerical results for the electrical and thermal conductivity of aluminium plasma are compared with experimental data and, for high densities, also with results of a Born approximation with respect to a weak electron‐ion pseudopotential.  相似文献   

9.
In a recent paper the stationary beam plasma discharge in partially dissociated hydrogen was investigated where the electron component was described by the Boltzmann equation for a mixture of atomic and molecular hydrogen and the main heavy charged and neutral particles by balance equations. It was assumed that, via the quasilinear beam plasma interaction, the electron beam produces only the turbulent electric field whilst an additional production of plasma electrons due to direct ionization by the beam and thus a direct influence on the balances of charge carriers were neglected. Now the additional production of plasma electrons due to direct ionization by the beam is studied on the basis of a generalized Boltzmann equation but for the simpler model of a purely molecular hydrogen plasma. For experimentally obtainable values of the turbulence energy density, beam energy, beam ionization degree and electron life time the calculation of the electron energy distribution function and of the direct beam contribution to the electron particle balance shows a marked influence of the direct beam ionization with increasing degree of beam ionization.  相似文献   

10.
本文分析了在XeCl准分子激光作用下NH_3分子的多光子电离质谱形成机理。所建立的动力学模型包括主要由经过中间态(6)和(1)的(2+1)共振多光子电离,生成NH_3~+;离子-分子反应形成大量的NH_4~+;经(6)态的(2+2)共振多光子电离,可能产生低产额的NH_2~+。这个模型的速率方程解与实验测量符合得很好,并在离子流强度对激光脉冲宽度的依赖关系中预示直接电离或间接电离机制的信息。  相似文献   

11.
Millimeter-long filaments and accompanying luminous plasma and defect channels created in fused silica (FS) by single focused femtosecond laser pulses with supercritical powers were probed in situ using optical imaging and contact ultrasonic techniques. Above the threshold pulse energy Eopt = 5 μJ corresponding to a few megawatt power levels pulses collapse due to self-focusing, producing channels filled by electron-hole plasma and luminescent defects, and exhibits predominantly compressive pressure transients. Analysis of the optical and ultrasonic response versus the laser pulse energy suggests that filamentary pulse propagation in the channels occurs with considerable dissipation of about ∼10 cm−1. The predominant ionization mechanism is most likely associated with avalanche ionization, while the main mechanism of optical absorption is free-carrier absorption via inverse Bremsstrahlung interaction with the polar lattice.  相似文献   

12.
An analytical solution of the Tonks-Langmuir (TL) problem with a bi-Maxwellian electron energy distribution function (EEDF) is obtained for a plasma slab. The solution shows that the ambipolar potential, the plasma density distribution, and the ion flux to the wall are mainly governed by the cold electrons, while the ionization rate and voltage drop across the wall sheath are governed by the hot electrons. The ionization rate by direct electron impact is found to be spatially rather uniform, contrary to the T-L solution where it is proportional to the plasma density distribution. The temperature of hot electrons defined by the ionization balance is found to be close to that of the T-L solution for a mono-Maxwellian EEDF, and is in reasonable agreement with experiments carried out in a low pressure capacitance RF discharge. The energy balance for cold electrons in this discharge shows that their heating by hot electrons via Coulomb interaction is equalized by the cold electrons' escape to the RF electrodes during collapse of the RF sheath  相似文献   

13.
We consider the anode plasma structure in a gas discharge with density of neutral atoms (neutrals) depleted by strong ionization. We obtain analytical solutions of the quasi-neutrality equation for the potential distribution and a condition for the existence of anode plasma in the one-dimensional case for arbitrary potential dependences of the neutral depletion frequency and the electron density. We consider the special cases of a constant neutral depletion frequency, ionization by Maxwellian electrons, and ionization by an intense electron beam under the conditions of collisionless ion motion and Boltzmann thermal electron distribution. The solutions for the first two cases at zero depletion parameter, i.e., at constant gas density, match those obtained in [1] by a power series expansion. In the case of ionization by Maxwellian electrons, the formation of anode plasma at reasonable working-gas flow rates is shown to be possible only at a fairly high electron temperature (if, e.g., xenon is used as the working gas, then T e ≥ 5 eV). Steady-state solutions of the quasi-neutrality equation under ionization by an intense electron beam exist only if the ratio of the electron beam density to the maximum thermal electron density does not exceed a certain limiting value.  相似文献   

14.
张丽  李向东 《光学学报》2006,26(11):755-1760
通过在狄拉克方程中考虑德拜休克尔(Debye-Hückel)屏蔽势,研究了类氢离子C5 低能级能量1s(2S1/2),2s(2S1/2),2p(2P1/2和2P3/2)随等离子体电子温度及电子密度的变化规律,计算得到类氢离子C5 能级能量及能级电离势随等离子体环境的变化关系。同时,拟合得到了基于德拜休克尔屏蔽势下相当好的束缚态能级能量随等离子体环境变化的解析公式,利用该公式得到了类氢离子C5 相应各能级发生压致电离的临界电子密度,其结果与其它文献比有很好的可比性。结果表明:束缚态能级能量随等离子体电子温度的升高而减小,随等离子体电子密度的增大而增大。能级能量百分漂移量的对数值与等离子体电子密度的对数值以及等离子体电子温度的对数值之间均呈现出近似线性关系。对计算等离子体电离态分布及光谱模拟具有一定的意义。  相似文献   

15.
高气压强电场电离过程中的离子浓度分布规律   总被引:9,自引:0,他引:9  
研究了高气压强电场电离区域的离子浓度分布的连续性方程, 对电离区域的电离物的产生、消失和输运进行了研究。通过采用电离放电增加了输入能量密度、G 值、电离占空比等, 从而提高了离子产生率。通过外加电场和离子“雪崩”头部的本征电场的叠加作用, 离子被束缚在放电通道中。对离子施加垂直电场方向的作用力, 就能把电场中的等离子体成束输送出去。已经能够做到有效体积仅为1cm3的等离子体源, 输运等离子体率达到 1012 cm- 3•s- 1。  相似文献   

16.
The beat heating of a magneto-plasma by two antiparallel electromagnetic waves at different temperatures is examined. The effects of plasma temperature, plasma electron collisions, plasma ion collisions and magnitude and direction of the magnetic field on the excitation of plasma electron waves and plasma ion waves are studied. A formula for the power absorption density of the plasma by using Maxwell's equations in conjuction with continuity and momentum equation. including collisions and pressure tensor terms, is derived. The contribution of the plasma temperature to the power absorption density, both at low and high beat frequencies, of the collisional and the non-collisional magnetised plasmas is found very significant and is illustrated numerically. The inclusion of pressure tensor term in the momentum equation is also found to cause characteristic changes in the power absorption density of the plasma with the orientation of magnetic field.  相似文献   

17.
A theory is developed for the density profile of low temperature plasmas confined by applied magnetic field and an experiment of the electron-cyclotron-resonance (ECR) plasma is conducted to compare the theoretical prediction and experimental measurements. Due to a large electron mobility along the magnetic field, electrons move quickly out of the system, leaving ions behind and building a space charge potential, which leads to the ambipolar diffusion of ions. In a steady-state condition, the plasma generation by ionization of neutral molecules is in balance with plasma loss due to the diffusion, leading to the electron temperature equation, which is expressed in terms of the plasma size, chamber pressure, and the ionization energy and cross section of neutrals. The power balance condition leads to the plasma density equation, which is also expressed in terms of the electron temperature, the input microwave power and the chamber pressure. It is shown that the plasma density increases, reaches its peak and decreases, as the chamber pressure increases from a small value (0.1 mTorr). These simple expressions of electron temperature and density provide a scaling law of ECR plasma in terms of system parameters. After carrying out an experimental observation, it is concluded that the theoretical predictions of the electron temperature and plasma density agree remarkably well with experimental data  相似文献   

18.
A spark plasma was created in a hydrogen atmosphere at 50 torr by a high voltage discharge (10 kV) and showed severe deviations from equilibrium behaviour, as indicated by measured values of pressure, electron density and population densities. Three techniques were applied for the evaluation of the electron temperature. The method based on the ionization rate equation gave results in satisfactory agreement with the expected values.  相似文献   

19.
The composition of the vacuum arc plasma for five elements (Cd, Mg, Al, Ni, and Mo) is calculated by the Saha equation, which assumes local thermodynamic equilibrium conditions within the ionization region of the cathode spot(s). The lowering of the ionization potential due to the high density of charged particles is considered. By matching the computed and the measured plasma ionic composition, the electron density and the temperature are estimated. The experimental plasma compositions can be approximated only at a high electron density (1019-10 21 cm-3) and at electron temperatures in the range of a few electronvolts  相似文献   

20.
A study of visible laser ablation of silicon, in vacuum, by using 3 ns Nd:YAG laser radiation is reported. Nanosecond pulsed ablation, at an intensity of the order of 1010 W/cm2, produces high non-isotropic emission of neutrals and ionic species. Mass quadrupole spectrometry, coupled to electrostatic ion deflection, allows estimation of the energy distributions of the emitted species from plasma. Neutrals show typical Boltzmann-like distributions while ions show Coulomb-Boltzmann-shifted distributions depending on their charge state. Time-of-flight measurements were also performed by using an ion collector consisting of a collimated Faraday cup placed along the normal to the target surface. Surface profiles of the craters, created by the laser radiation absorption, permitted to study the ablation threshold and ablation yields of silicon in vacuum. The plasma fractional ionization, temperature and density were evaluated by the experimental data. A special regard is given to the ion acceleration process occurring inside the plasma due to the high electrical field generated at the non-equilibrium plasma conditions. The angular distribution of the neutral and ion species is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号