首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The entanglement properties of a three-spin X X Z Heisenberg chain with three-spin interaction are studied by means of concurrence of pairwise entanglement. We show that ground-state pairwise entanglement, pairwise thermal entanglement, or quantum phase transition is not present in antiferromagnetic spin chain. For the ferromagnetic case, quantum phase transition takes place at △ = 1 for anisotropic interaction and at some values of three-spin coupling strength, and pairwise thermal entanglement increases when the value of J/T increases and with anisotropic interaction and three-spin interaction decrease. In addition, we find that increasing the anisotropic interaction and the three-spin interaction will decrease critical temperature.  相似文献   

2.
The entanglement properties of a three-spin X X Z Heisenberg chain with three-spin interaction are studied by means of concurrence of pairwise entanglement. We show that ground-state pairwise entanglement, pairwise thermal entanglement, or quantum phase transition is not present in antiferromagnetic spin chain. For the ferromagnetic case, quantum phase transition takes place at A = 1 for anisotropic interaction and at some values of three-spin coupling strength, and pairwise thermal entanglement increases when the value of J/T increases and with anisotropic interaction and three-spin interaction decrease. In addition, we find that increasing the anisotropic interaction and the three-spin interaction will decrease critical temperature.  相似文献   

3.
《Physics letters. A》2020,384(16):126309
We study the relationship between the quantum speed limit (QSL) time of a three-qubit system, and the quantum phase transitions (QPTs) of a spin-chain environment with the three-spin interaction. We find that the three-spin interaction can effectively manipulate the critical value of the QSL time. It makes the QSL time mark more clearly the quantum phase transition of the one-dimensional spin-chain models, especially the XX model. The dynamical evolution of the QSL time presents a periodic behavior in quantum-critical environment, whereas the three-spin interaction and external magnetic field can destroy this periodicity.  相似文献   

4.
张勇  刘丹  龙桂鲁 《中国物理》2007,16(2):324-328
The ground-state entanglement associated with a three-spin transverse Ising model is studied. By introducing an energy current into the system, a quantum phase transition to energy-current phase may be presented with the variation of external magnetic field; and the ground-state entanglement varies suddenly at the critical point of quantum phase transition. In our model, the introduction of energy current makes the entanglement between any two qubits become maximally robust.  相似文献   

5.
We investigate the nucleation, domain formation and propagation mechanisms observed in Spin Crossover materials, in the framework of an Ising-like model taking into account the elastic nature of the interactions. In Spin Crossover materials, the intermolecular coupling originates from a volume difference between the High Spin and the Low Spin molecular states and is simulated by anharmonic interaction potentials whose strengths are molecular-state-dependent. Using Monte Carlo methods, the phase diagram has been established. We show that the model contains both Ising short-range couplings and long-range elastic interactions. In particular, the results of long-range elastic models are reproduced. The introduction of lattice dynamics leads to the existence of spatial distributions of interaction energy and crystal field, corresponding to a local definition of physical properties. The nucleation process becomes highly dependent on the structural inhomogeneities induced by the spin transition. In this approach, connections strength between neighboring molecules are no more equivalent and have different ability to propagate domains. The presence of short-range Ising couplings gives rise to the occurrence of strong bonds forming a volume in which domains of the daughter phase can grow; in this case a macroscopic phase separation appears during the first order transition, even in a system with periodic boundary conditions. By contrast, in the case of a model with only long-range elastic interactions; strong bonds are uniformly spread in the lattice and a homogeneous phase transformation is observed, in good agreement with previous theoretical investigations.  相似文献   

6.
In this work we study an unusual phase transition of the Baxter–Wu model in the presence of an external magnetic field. The model is pure Baxter–Wu, which means that only three-spin interactions are taken into account. We construct a phase diagram on the temperature–field plane based mainly on the singularities of the specific heat. These singularities are more clearly observed than those of the magnetic susceptibility which are used in existing works. We establish a discontinuity in the critical exponents when the field is changed from zero to negative.  相似文献   

7.
We consider the Heisenberg model with two- and three-spin exchange interactions on a recursive ladder in a strong magnetic field. Recurrent relations for branches of the partition function of the Ising model with two- and three-spin exchange interactions are deduced. As a recursive lattice the zigzag ladder is chosen. In the antiferromagnetic case magnetization plateau are observed at low temperatures. Lyapunov exponents for the three-dimensional mapping at low temperatures are calculated. It is shown that for some values of two- and three-spin exchange parameters in the antiferromagnetic case the maximum of the Lyapunov exponent approaches zero.  相似文献   

8.
We examine the ability of quantum discord (QD) and entanglements (concurrence, EoF and negativity) to detect the critical points associated to quantum phase transitions (QPTs) for XY models, i.e., the isotropic XY model with three-spin interactions at zero temperature, and the anisotropic XY model in a transverse magnetic field h at finite temperatures. For the case of zero temperature, we found that both entanglements and QD can spotlight the critical points of QPTs for these two models. Moreover, QD versus distance M exhibits the long-range behavior of quantum correlation for the anisotropic XY model, while entanglement is short-ranged. For the case of finite temperatures, we found that negativity has the same behaviors with concurrence at or near transition points. Moreover, QD for the anisotropic XY model can increase with temperature even in the absence of a magnetic field.  相似文献   

9.
We investigate the quantum phase transition (QPT) and magnetocaloric effect (MCE) of a tetrameric chain with three-spin interaction using Green's function theory. The magnetization and gap analysis reveals a variety of quantum phases tuned by magnetic field and three-spin interaction, which can open up an energy gap, giving rise to the occurrence of zero magnetization plateau. However, strong three-spin couplings causing strong frustration will destroy the intermediate 1/2 plateau with emergence of a new gapless phase between two cusps. It favors achieving an enhanced MCE at the critical fields, where the minima of isoentropes as well as the valley-peak structure of Grüneisen ratio, signaling the accumulation of entropy, lead to cooling via adiabatic (de)magnetization processes. It is also found that the temperature dependence of specific heat combined with Grüneisen ratio can testify various quantum phases explicitly.  相似文献   

10.
The field-temperature phase diagram of a two-dimensional, three-spin interaction Ising model is studied using two different methods: mean field approximation and numerical transfer matrix techniques. The former leads to a rather rich phase diagram in which two separate phases with different symmetries can be found, and which presents first-order transition lines, a triple point, and a critical end point, like the solid-liquid-gas phase diagram of a pure compound. The numerical transfer matrix study confirms part of these results, but does not clearly evidence the existence of the less symmetric phase.  相似文献   

11.
A duality transformation is investigated for an Ising model in a rectangular lattice with alternate three-spin interactions in the horizontal direction and two-spin interactions in the vertical direction. The partition function is expressed by the one of the nearest-neighbour Ising model under an effective field in the rectangular lattice. It turns out that there is no phase transition in the system.  相似文献   

12.
Fluids adsorbed at micro-patterned and geometrically structured substrates can exhibit novel phase transitions and interfacial fluctuation effects distinct from those characteristic of wetting at planar, homogeneous walls. We review recent theoretical progress in this area paying particular attention to filling transitions pertinent to fluid adsorption near wedges, which have highlighted a deep connection between geometrical and contact angles. We show that filling transitions are not only characterized by large scale interfacial fluctuations leading to universal critical singularities but also reveal hidden symmetries with short-ranged critical wetting transitions and properties of dimensional reduction. We propose a non-local interfacial model which fulfills all these properties and throws light on long-standing problems regarding the order of the 3D short-range critical wetting transition.  相似文献   

13.
We perform a comparative Monte Carlo study of the easy-plane deconfined critical point (DCP) action and its short-range counterpart to reveal close similarities between the two models for intermediate and strong coupling regimes. For weak coupling, the structure of the phase diagram depends on the interaction range: while the short-range model features a tricritical point and a continuous U(1) × U(1) transition, the long-range DCP action is characterized by the runaway renormalization flow of coupling into a first (I) order phase transition. We develop a “numerical flowgram” method for high precision studies of the runaway effect, weakly I-order transitions, and polycritical points. We prove that the easy-plane DCP action is the field theory of a weakly I-order phase transition between the valence bond solid and the easy-plane antiferromagnet (or superfluid, in particle language) for any value of the weak coupling strength. Our analysis also solves the long standing problem of what is the ultimate fate of the runaway flow to strong coupling in the theory of scalar electrodynamics in three dimensions with U(1) × U(1) symmetry of quartic interactions.  相似文献   

14.
We propose a nonlocal interfacial model for 3D short-range wetting at planar and nonplanar walls. The model is characterized by a binding-potential functional depending only on the bulk Ornstein-Zernike correlation function, which arises from different classes of tubelike fluctuations that connect the interface and the substrate. The theory provides a physical explanation for the origin of the effective position-dependent stiffness and binding potential in approximate local theories and also obeys the necessary classical wedge covariance relationship between wetting and wedge filling. Renormalization group and computer simulation studies reveal the strong nonperturbative influence of nonlocality at critical wetting, throwing light on long-standing theoretical problems regarding the order of the phase transition.  相似文献   

15.
We have characterized the short-range order in the liquid and undercooled states of Au-Si alloy at the eutectic composition using molecular dynamics simulations. The interactions are described via a modified embedded-atom model refined to take into account the liquid properties. For the eutectic liquid, the local structure is characterized by a strong Au-Si affinity, namely a well-pronounced chemical short-range order which leads to the slowing down of the formation of icosahedral local motifs in the undercooled regime. Moreover we discuss the influence of this peculiar local structure on the dynamic and thermodynamic properties of the liquid phase and compare our results with available experimental data.  相似文献   

16.
王福高  唐坤发  胡嘉桢 《物理学报》1989,38(7):1196-1198
本文运用严格重整化交换研究了三结点hierarchical晶格上具有三体相互作用的伊辛模型。研究表明,与布喇菲晶格上的情况一样,最近邻二体相互作用伊辛模型与三体相互作用伊辛模型(Baxter-Wu模型)属于不同的普适类。  相似文献   

17.
Anasuya Kundu  P.K. Mohanty 《Physica A》2011,390(9):1585-1590
One-dimensional non-equilibrium systems with short-range interaction can undergo phase transitions from homogeneous states to phase separated states as interaction (?) among particles is increased. One of the model systems where such a transition has been observed is the extended Katz-Lebowitz-Spohn (KLS) model with ferromagnetically interacting particles at ?=4/5. Here, the system remains homogeneous for small interaction strength (?<4/5), and for anti-ferromagnetic interactions (?<0). We show that the phase separation transitions can also occur in anti-ferromagnetic systems if interaction among particles depends explicitly on the size of the block (n) they belong to. We study this transition in detail for a specific case ?=δ/n, where phase separation occurs for δ<−1.  相似文献   

18.
We have investigated the pressure-induced phase transition of InX (X = P, As, Sb) from Zinc-Blende (ZB) to NaCl structure by using realistic interaction potential model involving the effect of temperature. This model consists of Coulomb interaction, three-body interaction and short-range overlap repulsive interaction upto the second nearest neighbor involving temperature. Phase-transition pressure is associated with a sudden collapse in volume, showing the incidence of first-order phase transition. The phase-transition pressure is associated with volume collapses, and the elastic constants obtained from the present model indicate good agreement with the available experimental and theoretical data.  相似文献   

19.
We investigate the effect of quenched bond disorder on the anisotropic antiferromagnetic spin-1/2 (XXZ) chain as a model for disorder-induced quantum phase transitions. We find nonuniversal behavior of the average correlation functions for weak disorder, followed by a quantum phase transition into a strongly disordered phase with only short-range xy correlations. We find no evidence for the universal strong-disorder fixed point predicted by the real-space renormalization group, suggesting a qualitatively different view of the relationship between quantum fluctuations and disorder.  相似文献   

20.
The p-spin spin-glass model has been studied extensively at mean-field level because of the insights which it provides into the mode-coupling approach to structural glasses and the nature of the glass transition. We demonstrate explicitly that the finite-dimensional version of the three-spin model is in the same universality class as an Ising spin glass in a magnetic field. Assuming that the droplet picture of Ising spin glasses is valid we discuss how this universality may provide insights into why structural glasses are either "fragile" or "strong."  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号