首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present evidence that anomalous transport in the classical standard map results in strong enhancement of fluctuations in the localization length of quasienergy states in the corresponding quantum dynamics. This generic effect occurs even far from the semiclassical limit and reflects the interplay of local and global quantum suppression mechanisms of classically chaotic dynamics. Possible experimental scenarios are also discussed.  相似文献   

2.
Quantum resonances in the kicked rotor are characterized by a dramatically increased energy absorption rate, in stark contrast to the momentum localization generally observed. These resonances occur when the scaled Planck's constant Planck's [over ]=r/s 4pi, for any integers r and s. However, only the variant Planck's [over ]=r2pi resonances are easily observable. We have observed high-order quantum resonances (s>2) utilizing a sample of low energy, noncondensed atoms and a pulsed optical standing wave. Resonances are observed for variant Planck's [over ]=r/16 4pi for integers r=2-6. Quantum numerical simulations suggest that our observation of high-order resonances indicate a larger coherence length (i.e., coherence between different wells) than expected from an initially thermal atomic sample.  相似文献   

3.
The band structure problem of a solid in the laser field is investigated. One-dimensional Kronig-Penney model is chosen as an ideal crystalline solid model and the influence of the laser field is modeled by a train of periodic δ-kick pulses. Then, the realistic approach for simple solid on the basis of the experienced pseudopotential theory is given and the previous results are confirmed: The evaluated spectrum displays little sensitivity of the laser-perturbed band structure to the oncoming field. This gives credence to the conjecture that the spectrum is dense in the relevant region of the first quasienergy zone. The band structure retain practically unaltered. In addition the optical conductivity of sodium in the kicking field is calculated. The appropriate theoretical investigations can be relevant for practical realization purposes. The solids can be almost transparent under kicking pulses.  相似文献   

4.
The properties of materials largely reflect the degree and character of the localization of the molecules comprising them so that the study and characterization of particle localization has central significance in both fundamental science and material design. Soft materials are often comprised of deformable molecules and many of their unique properties derive from the distinct nature of particle localization. We study localization in a model material composed of soft particles, hard nanoparticles with grafted layers of polymers, where the molecular characteristics of the grafted layers allow us to “tune” the softness of their interactions. Soft particles are particular interesting because spatial localization can occur such that density fluctuations on large length scales are suppressed, while the material is disordered at intermediate length scales; such materials are called “disordered hyperuniform”. We use molecular dynamics simulation to study a liquid composed of polymer‐grafted nanoparticles (GNP), which exhibit a reversible self‐assembly into dynamic polymeric GNP structures below a temperature threshold, suggesting a liquid‐gel transition. We calculate a number of spatial and temporal correlations and we find a significant suppression of density fluctuations upon cooling at large length scales, making these materials promising for the practical fabrication of “hyperuniform” materials.  相似文献   

5.
Fischer B  Vodonos B  Atkins S  Bekker A 《Optics letters》2002,27(12):1061-1063
Mode-locked lasers with intracavity dispersion are experimentally shown to exhibit localization behavior in their frequency domain. The localization, with its typical exponential spectrum structure, is analogous to that which occurs for the quantum kicked rotor. The experimental demonstration of our optical kicked rotor is done with a long mode-locked dispersive fiber laser. The localization effect sets a basic limit on the spectrum bandwidth and the minimum pulse width in such lasers. It also provides a special experimental test bed for the study of optical kicked rotors and localization effects.  相似文献   

6.
We report measurements of microwave transmission over the first five Mie resonances of alumina spheres randomly positioned in a waveguide. Though precipitous drops in transmission and sharp peaks in the photon transit time are found near all resonances, measurements of transmission fluctuations show that localization occurs only in a narrow frequency window above the first resonance. There the drop in the photon density of states is found to be more pronounced than the fall in the photon transit time above the resonance, leading to a minimum in the Thouless number.  相似文献   

7.
The presence of highly concentrated dissolved laser-polarized xenon (approximately 1mol/L, polarization up to 0.2) induces numerous effects on proton and xenon NMR spectra. We show that the proton signal enhancements due to (129)Xe-(1)H cross-relaxation (SPINOE) and overall shifts of the proton resonances due to the average dipolar shift created by the intense xenon magnetization are correlated. Protons behave as very useful sensors of the xenon magnetization. Indeed the xenon resonances exhibit many features such as superimposition of narrow lines on the main resonance due to clustering effects, or such as a polarization-dependent line broadening that is tentatively assigned to the effects of temperature fluctuations that decorrelate some distant dipolar field effects from local interactions, transforming xenon spins from "like" to "unlike" spins. These spectral features make difficult the determination of the average dipolar field by means of the xenon resonance but have interesting consequences on the heteronuclear polarization transfer experiment in Hartmann-Hahn conditions (SPIDER).  相似文献   

8.
Anomalous transport due to Levy-type flights in quantum kicked systems is studied. These systems are kicked rotor and kicked Harper model. It is confirmed for a kicked rotor that there exist special "magic" values of a control parameter of chaos K=K(*)=6.908 745 em leader for which an essential increasing of a localization length is obtained. Functional dependence of the localization length on both parameter of chaos and quasiclassical parameter h is studied. We also observe immense delocalization of the order of 10(9) for a kicked Harper model when a control parameter K is taken to be K(*)=6.349 972. This "magic" value corresponds to special phase space topology in the classical limit, when a hierarchical self-similar set of sticky islands emerges. The origin of the effect is of the general nature and similar immense delocalization as well as increasing of localization length can be found in other systems. (c) 2000 American Institute of Physics.  相似文献   

9.
The coherent dynamics of two interacting carriers in one-dimensional quantum dot arrays driven by oscillating electric fields is theoretically investigated with the help of numerical calculations. The coherent localization of two electrons and that of an electron–hole pair are studied in this paper. For the two-electron case, the dynamic localization of the electrons is achieved when the Coulomb interaction is large enough. In this coherent localization, the Coulomb repulsion helps the electrons to be localized. For an electron–hole pair, although the dynamic localization of the composite particle does not occur due to charge neutrality, a different type of coherent localization can occur. These phenomena are explained by the quasienergy spectra based on Floquet analysis.  相似文献   

10.
In this work we investigate the electronic transport along model disordered DNA molecules using an effective tight-binding approach, addressing the localization properties. Different tools to investigate the degree of localization are examined as a function of system length, energy dependence and DNA to electrode coupling: localization length, participation number and sensitivity to boundary conditions. Combining the results obtained from these different tools, a thermodynamic limit for the model DNA molecule, within the mesoscopic length scale, can be established. Furthermore, three aspects are investigated: (i) the influence of strongly localized resonances on the localization length is discussed as an important mechanism defining the degree of localization for sizes below the thermodynamic limit; (ii) the dependence on the Hamiltonian parameters on a possible diffusive regime for short systems; and, finally, (iii) possible length dependent origins for the large discrepancies among experimental results for the electronic transport in DNA samples.  相似文献   

11.
Giant fluctuations in the 2D-electron recombination radiation were studied in structures with a single or double GaAs quantum well under quantum Hall effect conditions. It is established that, if these conditions are exactly satisfied, the amplitude of the 2D-electron photoluminescence (PL) intensity is several orders of magnitude higher than the noise level, with the noise having a normal (Poisson) distribution. The fluctuations in the PL line intensity are accompanied by a jumpwise change in the line positions. Analogous jumps were also observed in the spectra of inelastic light scattering by 2D electrons in structures with a single GaAs quantum well. The fluctuation processes are correlated over macroscopic distances. The characteristic correlation length is 1–2 mm. The spectral density of giant fluctuations was found to exhibit narrow peaks. The ratios of the frequencies of these peaks are equal to those of Fibonacci numbers. The appearance of such frequencies in the fluctuation spectrum indicates that the fluctuations studied bear a resemblance to processes occurring in open dissipative dynamic systems. The methods developed in the theory of these systems can, in principle, be used to study giant fluctuations.  相似文献   

12.
We present mean energy measurements for the atom optics kicked rotor as the kicking period tends to zero. A narrow resonance is observed marked by quadratic energy growth, in parallel with a complete freezing of the energy absorption away from the resonance peak. Both phenomena are explained by classical means, taking proper account of the atoms' initial momentum distribution.  相似文献   

13.
We study wave propagation in mixed, 1D disordered stacks of alternating right- and left-handed layers and reveal that the introduction of metamaterials substantially suppresses Anderson localization. At long wavelengths, the localization length in mixed stacks is orders of magnitude larger than for normal structures, proportional to the sixth power of the wavelength, in contrast to the usual quadratic wavelength dependence of normal systems. Suppression of localization is also exemplified in long-wavelength resonances which largely disappear when left-handed materials are introduced.  相似文献   

14.
Experiments and numerical simulations of the wake field behind a horizontal-axis wind turbine are carried out to investigate the interaction between the atmospheric boundary layer and a stand-alone wind turbine. The tested wind turbine(33 k W) has a rotor diameter of 14.8 m and hub height of 15.4 m. An anti-icing digital Sonic wind meter, an atmospheric pressure sensor, and a temperature and humidity sensor are installed in the upstream wind measurement mast. Wake velocity is measured by three US CSAT3 ultrasonic anemometers. To reflect the characteristics of the whole flow field, numerical simulations are performed through large eddy simulation(LES) and with the actuator line model. The experimental results show that the axial velocity deficit rate ranges from 32.18% to 63.22% at the three measuring points. Meanwhile, the time-frequency characteristics of the axial velocities at the left and right measuring points are different. Moreover, the average axial and lateral velocity deficit of the right measuring point is greater than that of the left measuring point. The turbulent kinetic energy(TKE) at the middle and right measuring points exhibit a periodic variation, and the vortex sheet-pass frequency is mostly similar to the rotational frequency of the rotor. However, this feature is not obvious for the left measuring point. Meanwhile, the power spectra of the vertical velocity fluctuation show the slope of-1, and those of lateral and axial velocity fluctuations show slopes of-1 and-5/3, respectively.However, the inertial subranges of axial velocity fluctuation at the left, middle, and right measuring points occur at 4, 7, and7 Hz, respectively. The above conclusion fully illustrates the asymmetry of the left and right measuring points. The experimental data and numerical simulation results collectively indicate that the wake is deflected to the right under the influence of lateral force. Therefore, wake asymmetry can be mainly attributed to the lateral force exerted by the wind turbine on the fluid.  相似文献   

15.
The kicked rotor and the kicked top are two paradigms of quantum chaos. The notions of quantum resonance and the pseudoclassical limit, developed in the study of the kicked rotor, have revealed an intriguing and unconventional aspect of classical–quantum correspondence. Here, we show that, by extending these notions to the kicked top, its rich dynamical behavior can be appreciated more thoroughly; of special interest is the entanglement entropy. In particular, the periodic synchronization between systems subject to different kicking strength can be conveniently understood and elaborated from the pseudoclassical perspective. The applicability of the suggested general pseudoclassical theory to the kicked rotor is also discussed.  相似文献   

16.
Guo T  Shang L  Ran Y  Guan BO  Albert J 《Optics letters》2012,37(13):2703-2705
A directional vibration sensor based on polarization-controlled cladding-to-core recoupling is demonstrated. A compact structure in which a short section of multi-mode fiber (MMF) stub containing a weakly tilted fiber Bragg grating (TFBG) is spliced to another single-mode fiber without any lateral offset. Multiple core modes of the MMF are coupled at the junction and appear as well defined resonances in reflection from the TFBG. Some of those resonances exhibit a strong polarization and bending dependence. Both the orientation and the amplitude of the vibrations can be determined unambiguously via dual-path power detection of the orthogonal-polarimetric lowest order LP(1n) modes. Meanwhile, the unwanted power fluctuations and temperature perturbations can be referenced out by monitoring the fundamental LP(01) mode resonance.  相似文献   

17.
We measure the statistical distribution of the local density of optical states (LDOS) on disordered semicontinuous metal films. We show that LDOS fluctuations exhibit a maximum in a regime where fractal clusters dominate the film surface. These large fluctuations are a signature of surface-plasmon localization on the nanometer scale.  相似文献   

18.
We study the Anderson localization of Bogolyubov quasiparticles in an interacting Bose-Einstein condensate (with a healing [corrected] length xi) subjected to a random potential (with a finite correlation length sigma(R)). We derive analytically the Lyapunov exponent as a function of the quasiparticle momentum k, and we study the localization maximum k(max). For 1D speckle potentials, we find that k(max) proportional variant 1/xi when xi>sigma(R) while k(max) proportional variant 1/sigma(R) when xi相似文献   

19.
Vacuum polarization for an atomic system in the laser field is considered in the representation of quasienergy states as a radiation correction to the quasienergy. It is shown that laser effects are absent in the polarization fermion loop in case of resonant mixing of atomic levels. Perspectivity of investigation of laser effects in vacuum polarization of muonic atoms is discussed.  相似文献   

20.
A new decimation scheme is introduced to study localization transitions in tight binding models with long range interaction. Within this scheme, the lattice models are mapped to a vectorized dimer where an asymptotic dissociation of the dimer is shown to correspond to the vanishing of the transmission coefficient through the system. When applied to the kicked Harper model, the method unveils an intricately nested extended and localized phases in two-dimensional parameter space. In addition to computing transport characteristics with extremely high precision, the renormalization tools also provide a new method to compute quasienergy spectrum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号