首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The aim of this study is the radiometric determination of uranium in waters by liquid scintillation counting (LSC) after pre-concentration of the element by cloud point extraction (CPE). For CPE, tributyl phosphate (TBP) is used as the complexing agent and (1,1,3,3-Tetramethylbutyl)phenyl-polyethylene glycol (Triton X-114) as the surfactant. The measurement is performed after phase separation by mixing of the surfactant phase with the liquid scintillation cocktail. The effect of experimental conditions such as pH, reactant ratio (e.g. m(TBP)/m(Triton), ionic strength (e.g. [NaCl]) and the presence of other chemical species (e.g. Ca2+ and Fe3+ ions as well as humic acid and silica colloids) on CPE has been investigated. According to the experimental results the total method efficiency is (13 ± 2)% and the chemical recovery (50 ± 10)% at pH 4 and reactant ratio (V(TBP)/V(Triton) = 0.1). Regarding the other parameters, generally Ca2+ and Fe3+ ions as well as the presence of colloidal species in solution (even at low concentrations) results in significant decrease of the chemical recovery of uranium. On the other hand increasing NaCl concentration leads to enhancement of chemical recovery. The detection limit under optimum experimental conditions has been found to be 0.5 Bq L?1 indicating that the method could be applied only to waters samples with increased uranium concentration. Moreover, the negative effect of the chemical species found in natural waters limits the applicability of the method with the respect to environmental radioactivity measurements.  相似文献   

2.
This is a report on the spectroscopic characteristics of UO2+2in the excited state in Triton X-100 micellar medium. It also indicates some important results of viscosity and surface tension measurements of the system which have direct relevance to the spectroscopic investigation in the excited state. The quenching of the UO2+2fluorescence due to Triton X-100, upon micellization in the aqueous medium, reveals two kinds of microenvironments of the fluorophore from the Stern–Volmer plot. This has been verified by flash photolytic measurements. A blue shift of the quenched emission spectrum is ascribed to the collisional encounter of UO2+2with the head groups of Triton X-100.  相似文献   

3.
ABSTRACT

A simple and reliable analytical method using instrumentation available in most of the laboratories has been developed for the separation and determination of silver nanoparticles in water samples. Cloud point extraction (CPE) was used for the separation of silver nanoparticles (AgNPs) from the sample and these nanoparticles were then determined by electrothermal atomic absorption spectrometry (ETAAS). Parameters related to the cloud point extraction procedure (Triton X-114 concentration, type of complexing agent (EDTA or Na2S2O3), pH, incubation temperature, incubation and centrifugation time) were selected using a multivariate approach (designs of experiments); 8.6% (v/v) Triton X-114, 750 µL saturated EDTA and pH 7 were selected as the optimum conditions. Calibration standards in a concentration range from 0 to 10 µg L?1 of AgNPs were subjected to the CPE procedure to obtain quantitative recoveries. The LOD and LOQ were 0.04 and 0.13 µg L?1, respectively. The method is selective for the extraction of AgNPs, and ionic Ag remains in the aqueous phase. Single particle inductively coupled plasma mass spectrometry (SP-ICP-MS) was used to evaluate the effect of the CPE procedure in particle size, and no changes were observed. Finally, the procedure was applied to wastewater samples spiked with nanoparticles with quantitative recoveries.  相似文献   

4.
Polyacrylic acid hydrogel was synthesized by Free Radical polymerization and characterized by means of FTIR. The FTIR results show that the carboxylic groups in the complexes coordinated to the metal ions in the form of two dentate. The effects of contact time, solid/liquid ratio, pH value, and initial concentration on the adsorption of UO2 2+ ions onto polyacrylic acid were investigated. The adsorption of UO2 2+ ions was highly dependent on the initial pH of metal ions solution and initial metal ions concentration. The adsorption kinetic data indicated that the chemical adsorption was the swiftness processes, the adsorption equilibrium could be achieved within 15 min. And there are very good correlation coefficients of linearized equations for Freundlich model, which indicated that the sorption isotherm of the hydrogel for UO2 2+ can be fitted to the Freundlich model. It was found that the maximum adsorption quantity of UO2 2+ was 1,179 mg/g. After five times of repeated tests for the hydrogel it still remained its excellent adsorption.  相似文献   

5.
We prepared poly(N,N-diethylacrylamide-co-acrylic acid) (P(DEA-co-AA)) microgels which could efficiently remove UO2 2+ from aqueous solutions. In this study, the effect of adsorption parameters such as pH value, adsorbent dose, shaking time, and temperature has investigated. It is found that the pseudo-second-order model is more suitable for our experiment. The adsorption kinetic data indicated that the chemical adsorption was the swiftness processes, the adsorption equilibrium could be achieved within 30 min. And there are very good correlation coefficients of linearized equations for Langmuir isotherm model, which indicated that the sorption isotherm of the hydrogel for UO2 2+ can be fitted to the Langmuir isotherm model. The adsorption process was spontaneous (?G 0 < 0) and exothermic (?H 0 < 0). The adsorbed UO2 2+ can be desorbed effectively by 0.1 M HNO3 and the adsorption capacity is not significantly reduced after five cycles. Present study suggests that this P(DEA-co-AA) can be used as a potential adsorbent for sorption UO2 2+ and also provide a simple, fast separation method for removal of UO2 2+ ions from aqueous solution.  相似文献   

6.
An ultrasound-assisted cloud point extraction (CPE) procedure was used for preconcentration and determination of vanadium by graphite furnace atomic absorption spectrometry. The vanadyl(IV) complex with ascorbic acid form a hydrophobic complex with 4-(2-pyridylazo) resorcinol (PAR) in a micelle medium, which is stable under our working conditions, and followed by its extraction into Triton X-100 surfactant-rich phase. The main factors affecting CPE efficiency, such as pH, concentrations of PAR, ascorbic acid and Triton X-100, incubation temperature, frequency and equilibration time of ultrasonic bath were investigated in detail. Under the optimum conditions, preconcentration of 10 mL sample gave a preconcentration factor of 36.4 and a detection limit of 4.0 µg kg?1. The proposed method was successfully applied to determination of vanadium in sea cucumbers with satisfactory results.  相似文献   

7.
The sorption of UO2 2+ from aqueous solution on attapulgite was investigated as a function of contact time, solid content, pH, ionic strength, foreign ions, humic acid (HA), and fulvic acid (FA) under ambient conditions by using batch technique. The attapulgite sample was characterized by XRD and FTIR in detail. The results indicated that the sorption of UO2 2+ was strongly dependent on pH and ionic strength. The sorption of UO2 2+ on attapulgite increased quickly with rising pH at pH < 6.5, and decreased with increasing pH at pH > 6.5. The presence of HA or FA enhanced the sorption of UO2 2+ on attapulgite obviously at low pH because of the strong complexation of surface adsorbed HA/FA with UO2 2+ on attapulgite surface. Sorption of UO2 2+ on attapulgite was mainly dominated by ion-exchange or outer-sphere surface complexation at low pH values, but by inner-sphere surface complexation at high pH values. The results indicate that attapulgite is a very suitable adsorbent for the preconcentration and solidification of UO2 2+ from large volumes of aqueous solutions because of its negative surface charge and large surface areas.  相似文献   

8.
《Analytical letters》2012,45(11):1662-1677
Abstract

To measure the different activity of chromium(VI) and chromium(III) in soil samples, chromium(VI) and total chromium (CrVI + CrIII) was extracted by KCl extracting agent and alkali fusion, respectively. Cloud point extraction (CPE) for speciation determination of chromium with double-slotted quartz tube atom trap–flame atomic absorption spectrometry (STAT-FAAS) was developed. Preconcentration of chromium(VI) and total chromium in different pH solutions was achieved by CPE, with ammonium pyrrolidine dithiocarbamate (APDC) as the chelating agent and Triton X-114 as the cloud point extractant. The conditions of CPE and determination were studied. Under the optimal conditions, the enrichment factor was 50 for chromium from the initial 100-mL sample solution to the final 2-mL determined solution. Compared to the FAAS method, the sensitivity was improved seven-fold for chromium by the STAT-FAAS method. The limit of detection was 0.082 µg/L for chromium.  相似文献   

9.
The polyethylene (PE) membrane was prepared by the radiation-induced grafting of acrylonitrile (AN) onto PE hollow fiber and by the subsequent amidoximation of cyano groups in poly-AN graft chains. The adsorption characteristics of the chelating hollow fiber membrane was examined as the solution of UO2 2+ permeated across the chelating hollow fiber membrane. The inner and outer diameter increased with an increasing grafting yield, whereas, the pure water flux and pore diameter decreased with an increasing grafting yield. The adsorption of UO2 2+ by the chelating hollow fiber membranes increased with an increasing amidoxime group. The adsorbed amount of UO2 2+ in the uranyl acetate solution was higher than that in the uranyl nitrate solution. The adsorbed amount of UO2 2+ is higher than that of Cu2+ when the solution of UO2 2+ and Cu2+ permeated across the chelating membrane, respectively. The adsorption characteristics of UO2 2+ by the amidoxime group-chelating fiber membrane in the presence of Na1+ and Ca2+ showed a high selectivity for UO2 2+ even though there was a high concen-tration of Na1+ and Ca2+ in the inlet solution.  相似文献   

10.
In this investigation, the micellization and the clouding phenomena of a nonionic surfactant, poly(ethylene glycol) t-octylphenyl ether (Triton X-100) in the absence and presence of halide ions (sodium salt) electrolytes has been reported. The critical micelle concentration (CMC) of Triton X-100 (in the absence and presence of electrolytes) was measured by surface tension measurements. A decreasing trend of CMC was found with increasing the temperature as well as the concentration of electrolyte. The effectiveness of the halide ions was found in the order: F? > Cl? > Br? > I?. The surface properties of Triton X-100 were evaluated. The thermodynamic parameters of the micellar systems of Triton X-100 were evaluated and from these thermodynamics data, it was found that in the presence of electrolyte the stability of the micellar system is more. The cloud points (CPs) of Triton X-100 were also measured in the absence and presence of halide ions of electrolytes. With the addition of halide ions of sodium salt (electrolyte), a decrease in CP values was observed and the order was found to be: F? > Cl? > Br? > I?.  相似文献   

11.
The copolymers of styrene and maleic anhydride resin (PSt/MA) was synthesized by free radical polymerization and characterized by means of FTIR. It is shown that the PSt/MA copolymer has rather strong coordination ability to UO2 2+ ions by chelation with the carboxylate group, and the microstructures of the U(VI)-PSt/MA complexes can be well controlled. The influence factors on UO2 2+ ions were also investigated and described in detail, such as contact time, solid/liquid ratio, pH value, ethanol content, and initial concentration. It was found that the maximum adsorption quantity of UO2 2+ was 831 mg/g. Experiments show that PSt/MA can recover UO2 2+ ions with high adsorption selectively from a simulated industry solution containing Ca2+ and Mg2+ as impurities. The adsorption kinetic data were best described by the pseudo-second-order equation, indicating that the chemical adsorption was the rate-limiting step. And there are very good correlation coefficients of linearized equations for Langmuir model, which indicated that the sorption isotherm of the PSt/MA for UO2 2+ can be fitted to the Langmuir model. After five times of repeated tests for the hydrogel it still remained its excellent adsorption.  相似文献   

12.
The ionic imprinted polymer (IIP) of uranyl ion (UO2 2+) as the template was synthesized by the formation of binary complexes of UO2 2+ with 2,4-dioxopentan-3-yl methacrylate as functional monomer followed by thermal copolymerization with ethylene glycol dimethacrylate as cross-linking monomer in the presence of 2,2′-azobisisobutyronitrile as initiator and 1,4-dioxane as porogenic solvent. 50 mmol L?1 HCl solution was used to leach out UO2 2+ ions from the IIP. Similarly, the control polymer was prepared under identical experimental conditions without using UO2 2+ ions. The above synthesized polymers were characterized by infra-red spectroscopy, thermo-gravimetric analysis and Barrett–Emmett–Teller surface area measurement. The maximum adsorption capacities of IIP and CP in (NH4)4[UO2(CO3)3] solution were 15.3 and 11.2 mg U g?1, respectively. The kinetics of adsorption followed a pseudo-second-order rate equation. The prepared IIP was successfully used to extract uranium from real seawater sample.  相似文献   

13.
The complexation reaction between UO2 2+ cation with macrocyclic ligand, 18-crown-6 (18C6), was studied in acetonitrile–methanol (AN–MeOH), nitromethane–methanol (NM–MeOH) and propylencarbonate–ethanol (PC–EtOH) binary mixed systems at 25 °C. In addition, the complexation process between UO2 2+ cation with diaza-18-crown-6 (DA18C6) was studied in acetonitrile–methanol (AN–MeOH), acetonitrile–ethanol (AN–EtOH), acetonitrile–ethylacetate (AN–EtOAc), methanol–water (MeOH–H2O), ethanol–water (EtOH–H2O), acetonitrile–water (AN–H2O), dimethylformamide–methanol (DMF–MeOH), dimethylformamide–ethanol (DMF–EtOH), and dimethylformamide–ethylacetate (DMF–EtOAc) binary solutions at 25 °C using the conductometric method. The conductance data show that the stoichiometry of the complexes formed between (18C6) and (DA18C6) with UO2 2+ cation in most cases is 1:1 [M:L], but in some solvent 1:2 [M:L2] complex is formed in solutions. The values of stability constants (log Kf) of (18C6 · UO2 2+) and (DA18C6 · UO2 2+) complexes which were obtained from conductometric data, show that the nature and also the composition of the solvent systems are important factors that are effective on the stability and even the stoichiometry of the complexes formed in solutions. In all cases, a non-linear relationship is observed for the changes of stability constants (log Kf) of the (18C6 · UO2 2+) and (DA18C6 · UO2 2+) complexes versus the composition of the binary mixed solvents. The stability order of (18C6 · UO2 2+) complex in pure studied solvents was found to be: EtOH > AN ≈ NM > PC ≈ MeOH, but in the case of (DA18C6 · UO2 2+) complex it was : H2O > MeOH > EtOH.  相似文献   

14.
Herein, we report the micellization and the clouding of a nonionic surfactant, poly(ethylene glycol) t-octylphenyl ether (Triton X-100), in aqueous solutions in the absence and presence of (chloride salt) electrolytes. In the absence and presence of electrolytes, the critical micelle concentration (CMC) of Triton X-100 was measured by surface tension measurements. Upon increasing the temperature as well as the concentration of electrolytes, the CMCs decreased. The surface properties and the thermodynamic parameters of the micellar systems were evaluated. From these evaluated thermodynamic parameters, it was found that in the presence of an electrolyte, the stability of the micellar system is high. The cloud points (CPs) of Triton X-100 were also measured in the absence and presence of metallic ions of electrolytes. Upon the addition of metallic ions of chloride salts (electrolytes), the decrease in CP values was observed and the order was found to be: K+ > Na+ > Li+ > NH+4.  相似文献   

15.

Polycarboxylic acid acts as hole scavenger and chelating agent, which is essential for the photocatalytic removal of multivalent metal ions. The photocatalytic uranium removal, role of chelating hole scavenger citric acid (CA), and removal mechanism were investigated in a TiO2 suspension system. The results show that chelating agent CA is an efficient hole scavenger. The maximum removal efficiency of U(VI) reaches up to 98.6%. The uranium-bearing precipitates contains Na[(UO2)(Cit)], UO2, or UO4·2H2O. The mechanisms for the photocatalytic removal of U(VI) and the role of CA are discussed. These results suggest that proper chelating hole scavengers can promote and regulate the photocatalytic removal of multivalent metal ions.

  相似文献   

16.
The aim of this study is the separation and pre-concentration of thorium from aqueous solutions by cloud point extraction (CPE) and its the radiometric determination by liquid scintillation counting (LSC). For CPE, tributyl phosphate (TBP) was used as the complexing agent and (1,1,3,3-Tetramethylbutyl)phenyl-polyethylene glycol (Triton X-114) as the surfactant. The radiometric measurements were performed after phase separation by mixing of the surfactant phase with the liquid scintillation cocktail. The effect of experimental conditions such as pH, ionic strength (e.g. [NaCl]) and the presence of other chemical species (e.g. Ca2+ and Fe3+ ions, and humic acid colloids) on the CPE separation recovery have been investigated at constant reactant ratio (m(TBP)/m(Triton) = 0.1). According to the experimental results the maximum chemical recovery is (60 ± 5)% at pH 3. Regarding the other parameters, generally Ca2+ and Fe3+ ions as well as the presence of colloidal species in solution (even at low concentrations) results in significant decrease of the chemical recovery of uranium. On the other hand increasing NaCl concentration leads to enhancement of chemical recovery. Generally, the method could be applied successfully for the radiometric determination of thorium in water solutions with relatively increased thorium content.  相似文献   

17.
Gamma radiation polymerization method was used for the modification of kaolin to produce (poly acrylamide-acrylic acid)-Kaolin (PAM-AA-K). Monazite ore is one of the main resources of uranium and lanthanide elements, therefore, this work focused on sorption of uranium, lanthanum and europium ions from low grade monazite leachate. The removal percent for Eu3+, La3+ and UO2 2+ are 94.6, 91.6 and 73.4%, respectively. Monolayer capacity of Eu3+, La3+ and UO2 2+ were found to be 54.64, 45.87 and 37.59 mg/g, respectively. The sorption mechanism of lanthanum and europium ions on PAM-AA-K composite mainly takes place as Ln(OH)2+, and for uranium as uranyl ion, UO2 2+.  相似文献   

18.
This study investigated a new adsorbent prepared from lignin modified organoclay for the removal of Pb2+ and UO2 2+ from aqueous solutions. The characterization of new adsorbent was performed by FT-IR and XRD. Adsorption of Pb2+ and UO2 2+ species in aqueous solution as a function of ion concentration, pH, temperature and time of adsorption was investigated in detail. The adsorption data were analyzed by using the Langmuir, Freundlich and Dubinin-Radushkevich models. The monolayer adsorption capacities of organoclay–lignin were 0.12 mol kg?1 and 0.42 mol kg?1 for Pb2+ and UO2 2+, respectively. The experimental kinetic data were analyzed by using pseudo-second-order kinetic and intra-particle diffusion models. The proposed adsorption mechanism follows a pseudo-second-order kinetic and endothermic because of increasing disorderliness at adsorbate/adsorbent interface.  相似文献   

19.
The use of water-soluble calixarenes: p-sulfonato thiacalixarene (ST), tetra-sulfonatomethylated calix[4]resorcinarene (SR), calix[4]resorcinarene phosphonic acid (PhR) as chelating agents in cloud point extraction (CPE) of La(III), Gd(III) and Yb(III) ions using Triton X-100 as non-ionic surfactant is introduced. The data obtained indicate that both complexation ability and structure of calixarenes govern the extraction efficiency of lanthanides. In particular ST and SR, forming 1:1 lanthanide complexes with similar stability in aqueous media, exhibit different extractability when used as chelating agents in CPE. First synthesized PhR was found to be the most efficient chelating agent exhibiting pH-dependent selectivity within La(III), Gd(III) and Yb(III) in CPE.  相似文献   

20.
A cloud point extraction procedure for the preconcentration of copper, nickel, iron and zinc ions in various samples has been described. Analyte ions in aqueous phase are complexed with 3-((indolin-3-yl)(phenyl)methyl)indoline (IYPMI) and following centrifugation quantitatively extracted to the aqueous phase rich in Triton X-114. The surfactant-rich phase was dissolved in 2.0 mol L−1 HNO3 in methanol prior to metal content determination by flame atomic absorption spectrometry (FAAS). The effects of some parameters including, the concentrations of IYPMI, Triton X-114 and HNO3, bath temperature, centrifuge rate and time were investigated on the recoveries of analyte ions. At optimum conditions, the detection limits of (3 SDb m−1) of 1.6, 2.8, 2.1 and 1.1 ng mL−1 for Cu2+, Fe3+, Ni2+ and Zn2+ along with preconcentration factors of 30 and enrichment factor of 48, 39, 34 and 52 for Cu2+, Ni2+, Fe3+ and Zn2+ respectively, were obtained. The proposed cloud point extraction has been successfully applied for the determination of metal ions in real samples with complicated matrix such as biological, soil and blood samples with high efficiency.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号