首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Consideration is given to the dynamic response of a Timoshenko beam under repeated pulse loading. Starting with the basic dynamical equations for a rotating radial cantilever Timoshenko beam clamped at the hub in a centrifugal force field, a system of equations are derived for coupled axial and lateral motions which includes the transverse shear and rotary inertia effects, as well. The hyperbolic wave equation governing the axial motion is coupled with the flexural wave equation governing the lateral motion of the beam through the velocity-dependent skew-symmetric Coriolis force terms. In the analytical formulation, Rayleigh-Ritz method with a set of sinusoidal displacement shape functions is used to determine stiffness, mass and gyroscopic matrices of the system. The tip of the rotating beam is subjected to a periodic pulse load due to local rubbing against the outer case introducing Coulomb friction in the system. Transient response of the beam with the tip deforming due to rub is discussed in terms of the frequency shift and non-linear dynamic response of the rotating beam. Numerical results are presented for this vibro-impact problem of hard rub with varying coefficients of friction and the contact-load time. The effects of beam tip rub forces transmitted through the system are considered to analyze the conditions for dynamic stability of a rotating blade with intermittent rub.  相似文献   

2.
中心刚体-楔形梁-质点刚柔耦合系统动力学分析   总被引:1,自引:0,他引:1  
研究了中心刚体-楔形梁-质点系统的固有特性和动力学响应.楔形梁为Euler-Bernoulli梁,高度和宽度都沿着梁的长度方向线性变化.利用广义Hamilton原理和一阶近似耦合模型得到了含有楔形梁完全耦合且时变的微分/代数控制方程.考虑了离心刚化效应,利用有限元得到了系统完全耦合的有限维方程.忽略轴向与横向位移的相互作用,得到了系统的一致质量、阻尼和刚度矩阵.最后对楔形梁和等截面梁在有无端部质点的四种结构进行仿真,结果表明存在显著差异,重点比较了同等条件下楔形梁与等截面梁的差异指数,说明均匀梁和楔形梁的截面细微的差别能够导致系统频率和动力学响应的明显差别.指出实际系统中使用楔形梁模型能够得到更为精确的仿真结果.  相似文献   

3.
In this paper, how to compute the eigenfrequencies of the structures composed of a series of inclined cables is shown. The physics of an inclined cable can be complicated, so solving the differential equations even approximately is difficult. However, rather than solving the system of 4 first-order equations governing the dynamics of each cable, the governing equations are instead converted to a set of equations that the exterior matrix satisfies. Therefore, the exterior matrix method (EMM) is used without solving the original governing equations. Even though this produces a system of 6 first-order equations, the simple asymptotic techniques to find the first three terms of the perturbative solution can be used. The solutions can then be assembled to produce a 6 × 6 exterior matrix for a cable section. The matrices for each cable in the structure are multiplied together, along with the exterior matrices for each joint. The roots of the product give us the eigenfrequencies of the system.  相似文献   

4.
In this paper, research on nonlinear dynamic behavior of a string-beam coupled system subjected to parametric and external excitations is presented. The governing equations of motion are obtained for the nonlinear transverse vibrations of the string-beam coupled system. The Galerkin's method is employed to simplify the governing equations to a set of ordinary differential equations with two degrees-of-freedom. The case of 1:2 internal resonance between the modes of the beam and string, principal parametric resonance for the beam, and primary resonance for the string is considered. The method of multiple scales is utilized to analyze the nonlinear responses of the string-beam coupled system. Based on the averaged equation obtained here, the techniques of phase portrait, waveform, and Poincare map are applied to analyze the periodic and chaotic motions. It is found from numerical simulations that there are obvious jumping phenomena in the resonant response–frequency curves. It is indicated from the phase portrait and Poincare map that period-4, period-2, and periodic solutions and chaotic motions occur in the transverse nonlinear vibrations of the string-beam coupled system under certain conditions. An erratum to this article is available at .  相似文献   

5.
In the present study, the geometrically non-linear dynamics of an axially moving plate is examined by constructing the bifurcation diagrams of Poincaré maps for the system in the sub and supercritical regimes. The von Kármán plate theory is employed to model the system by retaining in-plane displacements and inertia. The governing equations of motion of this gyroscopic system are obtained based on an energy method by means of the Lagrange equations which yields a set of second-order non-linear ordinary differential equations with coupled terms. A change of variables is employed to transform this set into a set of first-order non-linear ordinary differential equations. The resulting equations are solved using direct time integration, yielding time-varying generalized coordinates for the in-plane and out-of-plane motions. From these time histories, the bifurcation diagrams of Poincaré maps, phase-plane portraits, and Poincaré sections are constructed at points of interest in the parameter space for both the axial speed regimes.  相似文献   

6.
We investigate the nonlinear response of a clamped-clamped buckled beamto a primary-resonance excitation of its first vibration mode. The beamis subjected to an axial force beyond the critical load of the firstbuckling mode and a transverse harmonic excitation. We solve thenonlinear buckling problem to determine the buckled configurations as afunction of the applied axial load. A Galerkin approximation is used todiscretize the nonlinear partial-differential equation governing themotion of the beam about its buckled configuration and obtain a set ofnonlinearly coupled ordinary-differential equations governing the timeevolution of the response. Single- and multi-mode Galerkinapproximations are used. We found out that using a single-modeapproximation leads to quantitative and qualitative errors in the staticand dynamic behaviors. To investigate the global dynamics, we use ashooting method to integrate the discretized equations and obtainperiodic orbits. The stability and bifurcations of the periodic orbitsare investigated using Floquet theory. The obtained theoretical resultsare in good qualitative agreement with the experimental results obtainedby Kreider and Nayfeh (Nonlinear Dynamics 15, 1998, 155–177.  相似文献   

7.
The fundamental and subharmonic resonances of a nonlinear cyclic assembly are examined using the asymptotic method of multiple-scales. The system consists of a number of identical cantilever beams coupled by means of weak linear stiffnesses. Assuming beam inextensionality, geometric nonlinearities arise due to longitudinal inertia and the nonlinear relation between beam curvature and transverse displacement. The governing nonlinear partial differential equations are discretized by a Galerkin procedure and the resulting set of coupled ordinary differential equations is solved using an asymptotic analysis. The unforced assembly is known to possess localized nonlinear normal modes, which give rise to a very complicated topological structure of fundamental and subharmonic response curves. In contrast to the linear system which exhibits as many forced resonances as its number of degrees of freedom, the nonlinear system is found to possess a number of additional resonance branches which have no counterparts in linear theory. Some of the additional resonances are spatially localized, corresponding to motions of only a small subset of periodic elements. The analytical results are verified by numerical Poincaré maps, and the forced localization features of the nonlinear assembly are demonstrated by considering its response to impulsive excitations.  相似文献   

8.
Summary The aeroelastic response analysis of a coupled rotor/fuselage system is approached by iterative solution of the blade aeroelastic response in the non-inertial reference frame fixed on the hub, and the periodic response of the fuselage in the inertial reference frame. A model of the coupled system hinged with the flap and lag hinges, the pitching bearing which may not coincide with the hinges, and the sweeping-blade configuration is established. The moderate-deflection beam theory and the two-dimensional quasi-steady aerodynamic model are employed to model the aeroelastic blade, all the kinetic and inertial factors are taken into account in a unified manner. A five-nodes, 15-DOFs pre-twisted nonuniform beam element is developed for the discretization of the blade, three rigid-body-motion DOFs are introduced for the motion of the hinges and the bearing. The Hamilton's principle is employed to evaluate the equation of motion of the blade. The derived nonlinear ordinary differential equations with time-dependent periodic coefficients are solved by a modified quasi-linearization method, which is developed for the higher DOF periodic system. The resulting periodic forces and moments exerted on the fuselage by all the blades are evaluated every time, when the converged nonlinear periodic response of the blade is obtained under the consideration of the equilibrium of the blades. The fuselage structure is simplified to be a beam structure, the governing equation is established in the inertial reference frame and a two-nodes beam element is used to discretize the flexible fuselage. The periodic response of the fuselage is solved by a simple shooting method. The iteration of the rotor/fuselage response is continued, until the aeroelastic responses of the blade and the fuselage converge simultaneously. Both the hovering and the forward flight states can be considered. The results of a computed numerical example by the developed program are presented to verify in practice the economy of the modeling as well as the reliability and efficiency of the corresponding solving methods. Received 4 May 1998; accepted 11 August 1998  相似文献   

9.
We consider two linearly coupled masses, where one mass can have inelastic impacts with a fixed, rigid stop. This leads to the study of a two degree of freedom, piecewise linear, frictionless, unforced, constrained mechanical system. The system is governed by three types of dynamics: coupled harmonic oscillation, simple harmonic motion and discrete rebounds. Energy is dissipated discontinuously in discrete amounts, through impacts with the stop. We prove the existence of a non-zero measure set of orbits that lead to infinite impacts with the stop in a finite time. We show how to modify the mathematical model so that forward existence and uniqueness of solutions for all time is guaranteed. Existence of hybrid periodic orbits is shown. A geometrical interpretation of the dynamics based on action coordinates is used to visualize numerical simulation results for the asymptotic dynamics.  相似文献   

10.
The sub- and super-critical dynamics of an axially moving beam subjected to a transverse harmonic excitation force is examined for the cases where the system is tuned to a three-to-one internal resonance as well as for the case where it is not. The governing equation of motion of this gyroscopic system is discretized by employing Galerkin’s technique which yields a set of coupled nonlinear differential equations. For the system in the sub-critical speed regime, the periodic solutions are studied using the pseudo-arclength continuation method, while the global dynamics is investigated numerically. In the latter case, bifurcation diagrams of Poincaré maps are obtained via direct time integration. Moreover, for a selected set of system parameters, the dynamics of the system is presented in the form of time histories, phase-plane portraits, and Poincaré maps. Finally, the effects of different system parameters on the amplitude-frequency responses as well as bifurcation diagrams are presented.  相似文献   

11.
This paper reports a theoretical framework to analyze wave propagation in elastic solids of hexagonal symmetry. The governing equations include the equations of motions and partial differentiation of elastic constitutive relations with respect to time. The result is a set of nine, first-order, fully-coupled, hyperbolic partial differential equations with velocities and stress components as the unknowns. The equation set is then cast into a vector form with three 9 × 9 coefficient (or Jacobian) matrices. Physics of wave propagation are fully described by the eigen structure of these matrices. In particular, the eigenvalues of the Jacobian matrices are the wave speeds and a part of the left eigenvectors represents the wave polarization. Without invoking the plane wave solution and the Christoffel equation, two- and three-dimensional slowness profiles can be calculated. As an example, slowness profiles of a cadmium sulfide crystal are presented.  相似文献   

12.
The nonlinear dynamics of a clamped-clamped/sliding inextensional elastic beam subject to a harmonic axial load is investigated. The Galerkin method is used on the coupled bending-bending-torsional nonlinear equations with inertial and geometric nonlinearities and the resulting two second order ordinary differential equations are studied by the method of multiple time seales and by direct numerical integration. The amplitude equations are analyzed for steady and Hopf bifurcations. Depending on the amplitude of excitation, the damping and the ratio of principal flexural rigidities, various qualitatively distinct frequency response diagrams are uncovered and limit cycles and chaotic motions are found. In the truncated two-degree-of-freedom system the transition from periodic to chaotic amplitude-modulated motions is via the process of torus doubling and subsequent destruction of the torus.  相似文献   

13.
We consider parametrically excited vibrations of shallow cylindrical panels. The governing system of two coupled nonlinear partial differential equations is discretized by using the Bubnov–Galerkin method. The computations are simplified significantly by the application of computer algebra, and as a result low dimensional models of shell vibrations are readily obtained. After applying numerical continuation techniques and ideas from dynamical systems theory, complete bifurcation diagrams are constructed. Our principal aim is to investigate the interaction between different modes of shell vibrations under parametric excitation. Results for system models with four of the lowest modes are reported. We essentially investigate periodic solutions, their stability and bifurcations within the range of excitation frequency that corresponds to the parametric resonances at the lowest mode of vibration.  相似文献   

14.
Experimental and numerical investigations are carried out on anautoparametric system consisting of a composite pendulum attached to aharmonically base excited mass-spring subsystem. The dynamic behavior ofsuch a mechanical system is governed by a set of coupled nonlinearequations with periodic parameters. Particular attention is paid to thedynamic behavior of the pendulum. The periodic doubling bifurcation ofthe pendulum is determined from the semi-trivial solution of thelinearized equations using two methods: a trigonometric approximation ofthe solution and a symbolic computation of the Floquet transition matrixbased on Chebyshev polynominal expansions. The set of nonlineardifferential equations is also integrated with respect to time using afinite difference scheme and the motion of the pendulum is analyzed viaphase-plane portraits and Poincaré maps. The predicted resultsare experimentally validated through an experimental set-up equippedwith an opto-electronic set sensor that is used to measure the angulardisplacement of the pendulum. Period doubling and chaotic motions areobserved.  相似文献   

15.
带功能梯度材料的压电底层中周期裂纹对SH波的散射   总被引:1,自引:0,他引:1  
本文研究了压电材料底层中周期裂纹对SH波的散射,通过渗透边界条件和界面上连续边界条件,将问题转化为一组带Hilbter核的奇异积分方程。利用利用切比雪夫多项式逼近方法求解Hilbter核的奇异积分方程,给出了标准动应力强度因子和电位移强度因子的表达式。最后通过数值算例说明了几何参数、物性参数,入射波频率和振幅等对强度因子的影响.  相似文献   

16.
The periodic motions of the fractional order and/or delayed nonlinear systems are investigated in the frequency domain using a harmonic balance method with the analytical gradients of the nonlinear quality constraints and the sensitivity information of the Fourier coefficients can also obtained. The properties of fractional order derivatives and trigonometric functions are utilized to construct the fractional order derivatives, delayed and product operational matrices. The operational matrices are used to derive the analytical formulae of nonlinear systems of algebraic equations. The stability of periodic solutions for the delayed nonlinear systems is identified by an eigenvalue analysis of quasi-polynomials characteristic equations. Sensitivity analysis is performed to study the influence of the structural parameters on the system responses. Finally, three numerical examples are presented to illustrate the validity and feasibility of the developed method. It is concluded that the proposed methodology has the potential to facilitate highly efficient optimization, as well as sensitivity and uncertainty analysis of nonlinear systems with fractional derivatives and/or time delayed.  相似文献   

17.
主要研究侧向风载荷作用下小垂度覆冰悬索的非线性非平面运动的复杂动力学.根据分析力学、弹性力学和空气动力学理论,建立覆冰悬索3个自由度非线性振动的偏微分运动方程,并对其进行无量纲化,运用Galerkin方法对偏微分运动方程进行离散得到3个自由度的常微分方程,再利用多尺度法得到面内主共振2:1内共振的平均方程.利用数值方法研究悬索的非线性运动,结果表明系统呈现周期、多倍周期、概周期和混沌运动的规律.  相似文献   

18.
The dynamics for multi-link spatial flexible manipulator arms consisting of n links and n rotary joints is investigated. Kinematics of both rotary-joint motion and link deformation is described by 4 - 4 homogenous transformation matrices, and the Lagrangian equations are used to derive the governing equations of motion of the system. In the modeling the recursive strategy for kinematics is adopted to improve the computational efficiency. Both the bending and torsional flexibility of the link are taken into account. Based on the present method a general-purpose software package for dynamic simulation is developed. Dynamic simulation of a spatial flexible manipulator arm is given as an example to validate the algorithm.  相似文献   

19.
Ge  T.  Leung  A. Y. T. 《Nonlinear dynamics》1998,15(3):283-305
The invariant torus is a very important case in the study of nonlinear autonomous systems governed by ordinary differential equations (ODEs). In this paper a new numerical method is provided to approximate the multi-periodic surface formed by an invariant torus by embedding the governing ODEs onto a set of partial differential equations (PDEs). A new characteristic approach to determine the stability of resultant periodic surface is also developed. A system with two strongly coupled van der Pol oscillators is taken as an illustrative example. The result shows that the Toeplitz Jacobian Matrix/Fast Fourier Transform (TJM/FFT) approach introduced previously is accurate and efficient in this application. The application of the method to normal multi-modes of nonlinear Euler beam is given in [1].  相似文献   

20.
给出了一种试探函数法,并研究了变截面杆的纵振动问题. 先给出振动控制方程的特殊函数形式的试探解,然后要求此解满足控制方程,反过来确定了控制方程各种可能的系数函数(即截面变化函数)并得到了控制方程的精确解. 作为例子,给出了一种变截面杆在3 种边界条件下的频率方程,计算出了固有频率. 研究表明,试探函数法简单、直接,适合于研究变截面杆的纵振动问题. 对于杆扭转振动、薄膜振动以及管中波传播等问题,该方法同样有推广应用价值.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号