首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
The synthesis and structure of a novel beta-diketiminato Co(I) arene adduct [Me2NN]Co(eta6-toluene) (2) are described, that serves as a synthon to the reactive, "naked" 12-electron [Me2NN]Co fragment via loss of toluene in its reactions with dioxygen, organoazides, and a nitrosobenzene. Exposure of 2 to dioxygen in ether leads to {[Me2NN]Co}2(mu-O)2 (3), a rare example of a cobalt-oxo complex thermally stable at room temperature. The X-ray structure of 3 reveals a short Co-Co separation of 2.716(4) A and exhibits positional disorder for the bridging oxo groups; the predominant configuration contains oxygen atoms in square-planar sites with short Co-O distances (1.784(3) and 1.793(4) A). Reaction of 2 with organoazides N3R (R = 3,5-Me2C6H3 (Ar) or 1-adamantyl (Ad)) results in the formation of imido complexes whose structure depends on the nature of the azido substituent. The synthesis and structures of both {Me2NN]Co}2(mu-NAr)2 (4) with arylimido groups in tetrahedral bridging sites or the three-coordinate, 16-electron [Me2NN]CoNAd (5) are described. The X-ray structure of terminal imide 5 reveals a short Co-N bond distance (1.624(4) A) and only somewhat bent imido linkage (Co-N-C = 161.5(3) degrees ) consistent with a significant degree of multiple bond character. Complex 2 cleaves the O=N bond of the nitrosobenzene O=NAr (Ar = 3,5-Me2C6H3) to form the binuclear oxo-imido complex {[Me2NN]Co}2(mu-O)(mu-NAr) (6) that possesses a structure intermediate between square-planar 3 and tetrahedral 4 in which the [Me2NN]Co fragments are mutually orthogonal.  相似文献   

2.
The relative rates of C-H activation of methane, methanol, and dimethyl ether by [(N-N)PtMe(TFE-d(3))](+) ((N-N) = ArN=C(Me)-C(Me)=NAr; Ar = 3,5-di-tert-butylphenyl, TFE-d(3) = CF(3)CD(2)OD) (2(TFE)) were determined. Methane activation kinetics were conducted by reacting 2(TFE)-(13)C with 300-1000 psi of methane in single-crystal sapphire NMR tubes; clean second-order behavior was obtained (k = 1.6 +/- 0.4 x 10(-3) M(-1) s(-1) at 330 K; k = 2.7 +/- 0.2 x 10(-4) M(-1) s(-1) at 313 K). Addition of methanol to solutions of 2(TFE) rapidly establishes equilibrium between methanol (2(MeOD)) and trifluoroethanol (2(TFE)) adducts, with methanol binding preferentially (K(eq) = 0.0042 +/- 0.0006). C-H activation gives [(N-N)Pt(CH(2)OD)(MeOD)](+) (4), which is unstable and reacts with [(RO)B(C(6)F(5))(3)](-) to generate a pentafluorophenyl platinum complex. Analysis of kinetics data for reaction of 2 with methanol yields k = 2.0 +/- 0.2 x 10(-3) M(-1) s(-1) at 330 K, with a small kinetic isotope effect (k(H)/k(D) = 1.4 +/- 0.1). Reaction of dimethyl ether with 2(TFE) proceeds similarly (K(eq) = 0.023 +/- 0.002, 313 K; k = 5.5 +/- 0.5 x 10(-4) M(-1) s(-1), k(H)/k(D) = 1.5 +/- 0.1); the product obtained is a novel bis(alkylidene)-bridged platinum dimer, [(diimine)Pt(mu-CH(2))(mu-(CH(OCH(3)))Pt(diimine)](2+) (5). Displacement of TFE by a C-H bond appears to be the rate-determining step for all three substrates; comparison of the second-order rate constants (k((methane))/k((methanol)) = 1/1.3, 330 K; k((methane))/k((dimethy)(l e)(ther)) = 1/2.0, 313 K) shows that this step is relatively unselective for the C-H bonds of methane, methanol, or dimethyl ether. This low selectivity agrees with previous estimates for oxidations with aqueous tetrachloroplatinate(II)/hexachloroplatinate(IV), suggesting a similar rate-determining step for those reactions.  相似文献   

3.
Perfluoro-t-butyl trifluorovinyl ether (CF3)3COCFCF2 was prepared by the addition of perfluoro-t-butyl hypofluorite (CF3)3COF to 1,2-dichloro-1,2-difluoroethylene followed by dechlorination. The obtained trifluorovinyl ether monomer readily copolymerizes with TFE in the presence of a radical initiator.  相似文献   

4.
The first N-containing trifluorovinyl ether monomer (CF3)2NCF2OCFCF2 was synthesized. The starting perfluoroalkyl imine CF3–NCF2 was converted to the perfluoroalkyl amine (CF3)2NH by HF. The amine was converted into the carbamoyl fluoride (CF3)2NC(O)F via reaction with carbonyl fluoride COF2 in the presence of NaF. The carbamoyl fluoride was subjected to catalytic fluorination with molecular F2 in the presence of CsF to afford the hypofluorite (CF3)2NCF2(OF). The hypofluorite was added to CFClCFCl to provide a saturated halocarbon ether. Dechlorination of the ether with zinc in DMSO resulted in the title monomer. The new vinyl ether monomer readily copolymerizes with TFE.  相似文献   

5.
Dielectric measurements have been made at frequencies from 10 Hz to 100 kHz and temperatures from 4 K to at least 300 K on a number of polymers containing units of hexafluoropropylene (HFP). These included copolymers of tetrafluoroethylene (TFE) and HFP, the homopolymer of HFP, elastomeric copolymers of HFP and vinylidene fluoride, and alternating copolymers of methyl vinyl ether with TFE and HFP. The effect of an ether linkage between the CF3 group and the chain was also considered. Most of these polymers exhibited a main chain local mode relaxation near 228 K and a side group relaxation near 93 K.Dedicated to Professor Bernhard Wunderlich on the occasion of his 65th birthdayWe appreciate the helpful discussions with W. W. Schmiegel.  相似文献   

6.
Organofluorine compounds are widely used in all aspects of the chemical industry. Although tetrafluoroethylene (TFE) is an example of an economical bulk organofluorine feedstock, the use of TFE is mostly limited to the production of poly(tetrafluoroethylene) and copolymers with other alkenes. Furthermore, no catalytic transformation of TFE that involves carbon-fluorine bond activation has been reported to date. We herein report the first example of a palladium-catalyzed coupling reaction of TFE with arylzinc reagents in the presence of lithium iodide, giving α,β,β-trifluorostyrene derivatives in excellent yields.  相似文献   

7.
An electron-rich nickel(I) beta-diketiminate cleaves the E-NO bond of O-, S-, and N-organonitroso species to give the nickel nitrosyl [Me 3NN]NiNO along with dimeric nickel(II) alkoxide or thiolate complexes {[Me 3NN]Ni} 2(mu-E) 2 or the mononuclear nickel(II) amide [Me 3NN]NiNPh 2. This diamagnetic three-coordinate amide exhibits temperature-dependent NMR spectra due to a low-lying triplet state.  相似文献   

8.
The complexes [Pt[(CH2)4](NN)], 1a (NN = 2,2'-bipyridine) and 1b (NN = 1,10-phenanthroline) react with 2,3-epoxypropylphenyl ether in the presence of CO2 to give tris-chelate platina(IV)cyclopentane complexes characterized by 1H and 13C NMR spectroscopy as [Pt[(CH2)4](CH2CHCH2OPhOCO2)(NN)], 2. The reactions proceed by the SN2 mechanism and the rates were independent of concentration of CO2. It is demonstrated that for 1a, the reaction proceeds 2.32 times faster than the similar reaction in which the dimethyl analog, [PtMe2(2,2'-bipyridine)], is used. The analog tris-chelate complex [Pt[(CH2)4](CH2CHPhOCO2)(phen)], 3a, was similarly synthesized.  相似文献   

9.
Organometallic complexes to be used as single component precursors in the catalytic dimerization/polymerization of olefins usually must contain a labile ligand that can easily be displaced by the olefin. This is the first step in the activation of the precursor. One commonly used labile ligand is a nitrile. Here we report an example of incompatibility between the nickel or palladium aryl bond and acetonitrile. Neutral [MBr(Mes)NN] complexes in which Mes=2,4,6-Me3C6H2, NN=diazabutadiene (DAD), pyridinylimine (PIM), 2,2'-bipyridine (bipy) or 1,10-phenanthroline (phen) gave the expected [M(Mes)(3,5-lut)(NN)][BF4] compounds and the unexpected [Ni(Mes){NH=C(Me)(2,4,6-Me3C6H2)}(NN)][BF4] complexes in the presence of TlBF4 and 3,5-lutidine or acetonitrile. The sequence of reactions that leads to the imine ligand must include an initial insertion of the nitrile on the sigma(Ni-Mes) bond. These ionic complexes remain stable under 20 bar of ethylene.  相似文献   

10.
《Chemical physics letters》1987,142(5):371-375
Relative hole burning efficiencies of resorufin in ethanol-2,2,2-trifluoroethanol (TFE) and TFE-hydroxyl deuterated ethanol (EtOD) mixed glasses as a function of the mole fraction of TFE are reported. The hole burning efficiency is found to increase in both mixed glass systems, with a greater increase occurring in EtOD/TFE glasses. In all cases the hole width was found to be independent of the glass composition. The relationship between the hole burning efficiency and hydrogen bond strengths is discussed.  相似文献   

11.
The reaction of Mo(NN)(CO)4 (NN = bipyridine, phenathroline) with CH3OOCCCCOOCH3 (DMAC) gives Mo(NN)(CO)4(DMAC)2. An X-ray diffraction study of the product (NN = bipyridine) indicates that the two CO groups are cis to each other, while the two DMAC ligands are in trans arrangement, and are mutually perpendicular with each DMAC eclipsing and N---Mo---CO vector. In solution, the DMAC ligands appear to rotate about the Mo---DMAC bond as shown by the fluxional behavior in the NMR spectra of the products.  相似文献   

12.
13.
The reaction of the platinum(II) methyl cation [(N-N)Pt(CH(3))(solv)](+) (N-N = ArN[double bond]C(Me)C(Me)[double bond]NAr, Ar = 2,6-(CH(3))(2)C(6)H(3), solv = H(2)O (1a) or TFE = CF(3)CH(2)OH (1b)) with benzene in TFE/H(2)O solutions cleanly affords the platinum(II) phenyl cation [(N-N)Pt(C(6)H(5))(solv)](+) (2). High-pressure kinetic studies were performed to resolve the mechanism for the entrance of benzene into the coordination sphere. The pressure dependence of the overall second-order rate constant for the reaction resulted in Delta V(++) = -(14.3 +/- 0.6) cm(3) mol(-1). Since the overall second order rate constant k = K(eq)k(2), Delta V(++) = Delta V degrees (K(eq)) + Delta V(++)(k(2)). The thermodynamic parameters for the equilibrium constant between 1a and 1b, K(eq) = [1b][H(2)O]/[1a][TFE] = 8.4 x 10(-4) at 25 degrees C, were found to be Delta H degrees = 13.6 +/- 0.5 kJ mol(-1), Delta S degrees = -10.4 +/- 1.4 J K(-1) mol(-1), and Delta V degrees = -4.8 +/- 0.7 cm(3) mol(-1). Thus DeltaV(++)(k(2)) for the activation of benzene by the TFE solvento complex equals -9.5 +/- 1.3 cm(3) mol(-1). This significantly negative activation volume, along with the negative activation entropy for the coordination of benzene, clearly supports the operation of an associative mechanism.  相似文献   

14.
The complex potential energy surface and reaction mechanisms for the unimolecular isomerization and decomposition of methyl-nitramine (CH3NHNO2) were theoretically probed at the QCISD(T)/6-311+G*//B3LYP/6-311+G* level of theory. The results demonstrated that there are four low-lying energy channels: (i) the NN bond fission pathway; (ii) a sequence of isomerization reactions via CH3NN(OH)O; (IS2a); (iii) the HONO elimination pathway; (iv) the isomerization and the dissociation reactions via CH3NHONO (IS3). The rate constants of each initial step (rate-determining step) for these channels were calculated using the canonical transition state theory. The Arrhenius expressions of the channels over the temperature range 298-2000 K are k6(T)=1014:8e-46:0=RT , k7(T)=1013:7e-42:1=RT , k8(T)=1013:6e-51:8=RT and k9(T)=1015:6e-54:3=RT s-1, respectively. The calculated overall rate constants is 6.9£10-4 at 543 K, which is in good agreement with the experimental data. Based on the analysis of the rate constants, the dominant pathway is the isomerization reaction to form CH3NN(OH)O at low temperatures, while the NN bond fission and the isomerization reaction to produce CH3NHONO are expected to be competitive with the isomerization reaction to form CH3NN(OH)O at high temperatures.  相似文献   

15.
A kinetic study of the hydrogen atom abstraction reactions from propanal (PA) and 2,2-dimethylpropanal (DMPA) by the cumyloxyl radical (CumO?) has been carried out in different solvents (benzene, PhCl, MeCN, t-BuOH, MeOH, and TFE). The corresponding reactions of the benzyloxyl radical (BnO?) have been studied in MeCN. The reaction of CumO? with 1,4-cyclohexadiene (CHD) also has been investigated in TFE solution. With CHD a 3-fold increase in rate constant (k(H)) has been observed on going from benzene, PhCl, and MeCN to TFE. This represents the first observation of a sizable kinetic solvent effect for hydrogen atom abstraction reactions from hydrocarbons by alkoxyl radicals and indicates that strong HBD solvents influence the hydrogen abstraction reactivity of CumO?. With PA and DMPA a significant decrease in k(H) has been observed on going from benzene and PhCl to MeOH and TFE, indicative of hydrogen-bond interactions between the carbonyl lone pair and the solvent in the transition state. The similar k(H) values observed for the reactions of the aldehydes in MeOH and TFE point toward differential hydrogen bond interactions of the latter solvent with the substrate and the radical in the transition state. The small reactivity ratios observed for the reactions of CumO? and BnO? with PA and DMPA (k(H)(BnO?)/k(H)(CumO?) = 1.2 and 1.6, respectively) indicate that with these substrates alkoxyl radical sterics play a minor role.  相似文献   

16.
朱士正  金桂芳  Des Marteau  D.D 《中国化学》2002,20(11):1268-1273
IntroductionInthepastdecades ,considerableresearchworkhasbeenfocusedonthefluorinatedionomers1 4 whichhaveexceptionalthermalandchemicalstabilities .5Thereforetheyhaveshownspecialapplications ,suchasmembraneseparationintheelectrochemicalprocessesandsuperaci…  相似文献   

17.
A theoretical study on two series of electron‐rich group 8 hydrides is carried out to evaluate involvement of the transition metal in dihydrogen bonding. To this end, the structural and electronic parameters are computed at the DFT/B3PW91 level for hydrogen‐bonded adducts of [(PP3)MH2] and [Cp*MH(dppe)] (M=Fe, Ru, Os; PP34‐P(CH2CH2PPh2)3, dppe= κ2‐Ph2PCH2CH2PPh2) with CF3CH2OH (TFE) as proton donor. The results are compared with those of adduct [Cp2NbH3] ? TFE featuring a “pure” dihydrogen bond, and classical hydrogen bonds in pyridine ? TFE and Me3N ? TFE. Deviation of the H ??? H? A fragment from linearity is shown to originate from the metal participation in dihydrogen bonding. The latter is confirmed by the electronic parameters obtained by NBO and AIM analysis. Considered together, orbital interaction energies and hydrogen bond ellipticity are salient indicators of this effect and allow the MH ??? HA interaction to be described as a bifurcate hydrogen bond. The impact of the M ??? HA interaction is shown to increase on descending the group, and this explains the experimental trends in mechanisms of proton‐transfer reactions via MH ??? HA intermediates. Strengthening of the M ??? H interaction in the case of electron‐rich 5d metal hydrides leads to direct proton transfer to the metal atom.  相似文献   

18.
There are only two dediazoniation products of benzenediazonium tetrafluoroborate in 2,2,2-trifluoroethanol (TFE), namely phenyl 2,2,2-trifluoroethyl ether ( 1 ) and fluorobenzene ( 2 ). The reaction kinetics are strictly first-order with respect to the diazonium salt. The addition of increasing amounts of pyridine to the system results in a gradual decrease in the yields of 1 and 2 and an increase in the yields of the homolytically formed products, benzene ( 3 ), biphenyl ( 4 ), isomeric phenylpyridines ( 5 ) and diazo tar ( 6 ). The reaction kinetics show that the rate of dediazoniation of the benzene diazonium salt increases with increasing amounts of pyridine. The reaction with added pyridine is no longer first-order with respect to the diazonium ion. The product analyses and the kinetic data are consistent with the view that in pure TFE this diazonium salt decomposes completely by a heterolytic mechanism. The addition of pyridine brings about a competitive homolytic mechanism which becomes increasingly dominant as the concentration of pyridine increases.  相似文献   

19.
Terpolymerization of tetrafluoroethylene (TFE) with propylene (P) and n-butyl vinyl ether (NBVE) induced by γ-rays at room temperature at dose rate 5 × 105 rad/h and P/NBVE molar ratio from 49/1 to 10/40 was carried out. An alternating copolymerization between TFE and two α-olefins was found to take place in this system, so that 50 mole % of TFE containing terpolymer is always formed at various monomer compositions. The terpolymer composition can be explained successfully by the treatment by a complex mechanism. The complex reactivity ratios of rI (TFE–complex) and rII (TFE-NBVE complex) were calculated to be 0.5 and 0.6, respectively, assuming a complex mechanism. The polymerization rate and molecular weight increase with NBVE concentration in the monomer mixture. Colorless transparent rubber-like polymers were obtained at each monomer composition. The glass transition temperature sharply decreases with NBVE concentration in the terpolymer but the thermal and chemical resistances of the terpolymer slightly decrease. Considering these results together with the mechanical properties it has been concluded that the 45/48/7 terpolymer of TFE/P/NBVE molar ratio is good as a practical elastomer useful at relatively low temperatures.  相似文献   

20.
The key intermediate in dinitrogen cleavage by Mo(N[t-Bu]Ar)3, 1 (Ar = 3,5-C6H3Me2), has been characterized by a pair of single crystal X-ray structures. For the first time, the X-ray crystal structure of (mu-N2)[Mo(N[t-Bu]Ar)3]2, 2, and the product of homolytic fragmentation of the NN bond, NMo(N[t-Bu]Ar)3, are reported. The structural features of 2 are compared with previously reported EXAFS data. Moreover, contrasts are drawn between theoretical predictions concerning the structural and magnetic properties of 2 and those reported herein. In particular, it is shown that 2 exists as a triplet (S = 1) at 20 degrees C. Further insight into the bonding across the MoNNMo core of the molecule is obtained by the synthesis and structural characterization of the one- and two-electron oxidized congeners, (mu-N2)[Mo(N[t-Bu]Ar)3]2[B(Ar(F))4], 2[B(Ar(F))4] (Ar(F) = 3,5-C6H3(CF3)2) and (mu-N2)[Mo(N[t-Bu]Ar)3]2[B(Ar(F))4]2, 2[B(Ar(F))4]2, respectively. Bonding in these three molecules is discussed in view of X-ray crystallography, Raman spectroscopy, electronic absorption spectroscopy, and density functional theory. Combining X-ray crystallography data with Raman spectroscopy studies allows the NN bond polarization energy and NN internuclear distance to be correlated in three states of charge across the MoNNMo core. For 2[B(Ar(F))4], bonding is symmetric about the mu-N2 ligand and the NN polarization is Raman active; therefore, 2[B(Ar(F))4] meets the criteria of a Robin-Day class III mixed-valent compound. The redox couples that interrelate 2, 2(+), and 2(2+) are studied by cyclic voltammetry and spectroelectrochemistry. Insights into the electronic structure of 2 led to the discovery of a photochemical reaction that forms NMo(N[t-Bu]Ar)3 and Mo(N[t-Bu]Ar)3 through competing NN bond cleavage and N2 extrusion reaction pathways. The primary quantum yield was determined to be Phi(p) = 0.05, and transient absorption experiments show that the photochemical reaction is complete in less than 10 ns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号