首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polymer/surfactant interactions at the air/water interface   总被引:1,自引:0,他引:1  
The development of neutron reflectometry has transformed the study and understanding of polymer/surfactant mixtures at the air/water interface. A critical assessment of the results from this technique is made by comparing them with the information available from other techniques used to investigate adsorption at this interface. In the last few years, detailed information about the structure and composition of adsorbed layers has been obtained for a wide range of polymer/surfactant mixtures, including neutral polymers and synthetic and naturally occurring polyelectrolytes, with single surfactants or mixtures of surfactants. The use of neutron reflectometry together with surface tensiometry, has allowed the surface behaviour of these mixtures to be related directly to the bulk phase behaviour. We review the broad range of systems that have been studied, from neutral polymers with ionic surfactants to oppositely charged polyelectrolyte/ionic surfactant mixtures. A particular emphasis is placed upon the rich pattern of adsorption behaviour that is seen in oppositely charged polyelectrolyte/surfactant mixtures, much of which had not been reported previously. The strong surface interactions resulting from the electrostatic attractions in these systems have a very pronounced effect on both the surface tension behaviour and on adsorbed layers consisting of polymer/surfactant complexes, often giving rise to significant surface ordering.  相似文献   

2.
研究阴、阳离子表面活性剂混合体系(十二烷基氯代吡啶,辛基磺酸钠,辛基三乙基溴化铵/十二烷基苯磺酸钠)在硅胶,纯水和硅胶,矿化水界面上的吸附作用,探讨阴(阳)离子表面活性剂的存在对阳(阴)离子表面活性剂吸附作用的影响.结果表明,阴离子表面活性剂的存在基本不影响阳离子表面活性剂在带负电固体表面的吸附;而阳离子表面活性剂的存在却使本来吸附量就不大的阴离子表面活性剂在带负电的固体表面上不再吸附.在矿化水中阳离子表面活性剂的吸附量比在纯水中明显降低.从硅胶表面吸附机制解释了所得结果.  相似文献   

3.
The effect of cationic and anionic surfactants, as well as cationic and anionic polyelectrolytes (PE), their binary mixtures on the electrokinetic potential of monodisperse carboxylated polystyrene (PS) particles as a function of the reagents dose, pH, the charge density (CD) of polymers, the surfactant/PE and binary PE mixture composition, and sequence of components addition to the suspension has been studied. It has been shown that addition of increasing amount of anionic surfactant/polyelectrolytes increases the absolute value of the negative zeta-potential of PS particles; this increase is stronger the CD of the PE and pH of the system are higher. Adsorption of cationic surfactant/polyelectrolytes leads to a significant decrease in the negative ζ-potential and to overcharging the particles; changes in the ζ-potential are more pronounced for PE samples with higher CD and for suspensions with lower pH values. In mixtures of cationic and anionic PE, in a wide range of mixture composition, the ζ-potential of particles is determined by the adsorbed amount of the anionic polymer independently of the CD of PEs and the sequence of addition of the mixture components. The isoelectric point of the surface is reached at the adsorbed amount of positive charges of PE that is approximately equal to the surface CD of particles. The laws observed were explained by features of macromolecules conformation in adsorbed mixed PE layers. Considerations about the role of coulombic and non-coulombic forces in the mechanism of anionic/cationic PE adsorption are presented.  相似文献   

4.
 The electrokinetic behavior and viscosity of anatase and alumina in mixed-surfactant solutions were investigated. Sodium dodecylsulfate and nonionic polyoxyethylene ethers were investigated as model surfactants. Pure nonionic surfactants adsorbed on anatase and coated the particles, so that the zeta potential was nearly zero near the critical micelle concentration of surfactant. At higher surfactant concentrations, an increase in the zeta potentials was observed, suggesting a change in the microstructure of the adsorbed layer. Addition of nonionic surfactant to positively charged anatase and alumina with some preadsorbed sodium dodecylsulfate reversed the surface charge of the oxide to negative, indicating enhanced coadsorption of the anionic surfactant. At higher concentrations of the nonionic surfactant, the charge reversed back to positive. Nonionic surfactants did not reverse the surface charge of these oxides in the absence of the anionic surfactant. Coenhanced adsorption of nonionic and anionic surfactants was used to stabilize alumina at the isoelectric point, where neither surfactant adsorbed appreciably on its own. These results suggest a dramatic change in conformation of the surfactant chains in mixed systems. Further explanation and justification of the proposed changes in adsorbed surfactant conformation require spectroscopic evidence. Received: 12 March 1997 Accepted: 22 July 1997  相似文献   

5.
Solutions of surfactant-polymer mixtures often exhibit different foaming properties, compared to the solutions of the individual components, due to the strong tendency for formation of polymer-surfactant complexes in the bulk and on the surface of the mixed solutions. A generally shared view in the literature is that electrostatic interactions govern the formation of these complexes, for example between anionic surfactants and cationic polymers. In this study we combine foam tests with model experiments to evaluate and explain the effect of several polymer-surfactant mixtures on the foaminess and foam stability of the respective solutions. Anionic, cationic, and nonionic surfactants (SDS, C(12)TAB, and C(12)EO(23)) were studied to clarify the role of surfactant charge. Highly hydrophilic cationic and nonionic polymers (polyvinylamine and polyvinylformamide, respectivey) were chosen to eliminate the (more trivial) effect of direct hydrophobic interactions between the surfactant tails and the hydrophobic regions on the polymer chains. Our experiments showed clearly that the presence of opposite charges is not a necessary condition for boosting the foaminess and foam stability in the surfactant-polymer mixtures studied. Clear foam boosting (synergistic) effects were observed in the mixtures of cationic surfactant and cationic polymer, cationic surfactant and nonionic polymer, and anionic surfactant and nonionic polymer. The mixtures of anionic surfactant and cationic polymer showed improved foam stability, however, the foaminess was strongly reduced, as compared to the surfactant solutions without polymer. No significant synergistic or antagonistic effects were observed for the mixture of nonionic surfactant (with low critical micelle concentration) and nonionic polymer. The results from the model experiments allowed us to explain the observed trends by the different adsorption dynamics and complex formation pattern in the systems studied.  相似文献   

6.
In this study, we examined the influence of surfactants on the adsorption of polymers on cotton fibers. The extent of polymer adsorption on cotton was determined directly by means of fluorescence spectroscopy using fluorescently labeled polymers. The investigation of polymer adsorption in the presence of different types of surfactants and for a large range of differently structured polymers allows us to obtain a rather general picture of this important issue. Systematic relationships between the presence of surfactant and the type of polymer can be deduced but cannot be cast in simple terms such as electrostatic interaction but instead depend on the detailed interaction between the surfactant and polymer both in solution and adsorbed on the cotton surface. A particularly complex situation arises for the case of oppositely charged surfactant and polymer because of the possibility of precipitate formation. The study of such complex systems not only is of scientific interest but also is of great commercial interest because both polymers and surfactants are parts of detergent formulations and cotton is one of the most abundantly used materials for fabrics.  相似文献   

7.
Associating polymers are prepared from poly(oxyelliylene) and a diisocyanate and terminated by linear alcohols with 8 to 18 C-atoms. Solutions of these polymers in pure water and with surfactants have been investigated by dynamic light scattering and NMR self-diffusion. The diffusion results indicate that the polymers in solution form heterodisperse clusters that show a complex behavior of overlap and coupling to each other, a feature which may be described by the coupling theory of Ngai and coworkers. In addition competitive adsorption on polystyrene latex particle is measured and the results indicate a multilayer adsorption structure that is broken down by surfactant addition. Surfactant adsorption seems to be practically independent of adsorbed polymer, except for an “initial inhibition” concentration that may be connected to the desorption of secondary layers of adsorbed polymer.  相似文献   

8.
Synergy and antagonism between sugar-based surfactants, a group of environmentally benign surfactants, and cationic surfactants and nonionic ethoxylated surfactants have been investigated in this study with solids which adsorbs only one or other when presented alone. Sugar-based n-dodecyl-beta-D-maltoside (DM) does not adsorb on silica by itself. However, in mixtures with cationic dodecyltrimethylammonium bromide (DTAB) and nonionic nonylphenol ethoxylated decyl ether (NP-10), DM adsorbs on silica through hydrophobic interactions. In contrast, although DM does adsorb on alumina, the presence of NP-10 reduces the adsorption of DM as well as that of the total surfactant adsorption. Such synergistic/antagonistic effects of sugar-based n-dodecyl-beta-D-maltoside (DM) in mixtures with other surfactants at solid/liquid interfaces were systematically investigated and some general rules on synergy/antagonism in mixed surfactant systems are identified. These results have implications for designing surfactant combinations for controlled adsorption or prevention of adsorption.  相似文献   

9.
The surface properties of mixed system containing gemini anionic surfactant 1,2,3,4-butanetetracarboxylic sodium, 2,3-didodecyl ester and partly hydrolyzed polyacrylamide were investigated by surface tension measurements and oscillating bubble methods. The influences of surfactant concentration, dilational frequency, temperature, pH, as well as salts on dilational modulus were explored. Meanwhile, the interfacial tension relaxation method was employed to obtain the characteristic time of surface relaxation process. The polymers play important roles in changing the interfacial properties especially at lower surfactant concentration. The possible mechanism of the polymer in changing the interfacial properties is proposed. Both the hydrophobic and electrostatic interaction among the surfactants and polymers dominate the surface properties of mixed system. These dynamic properties are of fundamental interest in understanding the structure of adsorption layers, dynamics of surfactant molecules, and their interaction with polymers at the surface.  相似文献   

10.
Summary: Layered double hydroxide (LDH) is a relatively new class of layered crystalline clay materials to be used as nanofiller in various polymer matrices. We report here the organic modification of LDH by anionic surfactants having different sizes and functionalities. Subsequently, their dispersion in polymer is discussed and finally the characteristics of the polymer/LDH nanocomposites are investigated. LDH has been modified using regeneration method, which shows that irrespective of size and functionality of the anionic surfactant, organic modification can be carried out efficiently. However, it has been observed that alkyl sulfonate are more efficiently intercalated within LDH layers than other surfactants giving well defined crystal structure of the modified LDH. These modified LDH, when dispersed in polymers like maleic anhydride grafted polyethylene shows that not only the size of the surfactant, but also the functionality of the surfactant influences their dispersion in a non polar polymer matrix.  相似文献   

11.
The lower critical solution temperature (LCST) of hydroxypropylcellulose bearing lignin (HPC-L) prepared from unbleached pulp depends on the amount of residual lignin. An HPC-L gel having thermal properties reflective of original HPC-L was prepared using ethyleneglycol diglycidylether as a crosslinker, as previously reported [Uraki et al. (2004) Carbohydr. Polym. 58:123–130], and the volume transition temperature was detected as an endothermic peak by differential scanning calorimetry (DSC). The adsorption and release behavior of the guest molecules to/from this gel was then examined. When the adsorption of cationic and anionic guests was compared, cationic methylene blue (MB) was adsorbed in larger amounts than anionic methyl orange (MO). In addition, MB adsorption into the HPC-L gel was greater than MB adsorption into the HPC gel prepared from commercially available HPC. This suggests that residual lignin affects the adsorption of organic dyes. Significant differences were not observed with respect to the release of MB from HPC-L at 38 °C and lower temperatures. In the adsorption of surfactants, marked adsorption at around the critical micelle concentration of the ionic surfactants and gel swelling were observed. Such swelling did not occur in the aqueous nonionic surfactant solution, although the nonionic surfactant was adsorbed into the gel. Gel swelling may have been caused by the electrostatic repulsion of the ionic surfactants adsorbed onto the polymer chains within the gel structure.  相似文献   

12.
Mixed polymer-surfactant systems have broad applications, ranging from detergents, paints, pharmaceutical, and cosmetic to biotechnological. A review of the underlying polymer-surfactant association in bulk is given. While ionic surfactants bind broadly to polymers, nonionics only do so if the polymer has a lower polarity and can interact by hydrophobic interactions. Water-soluble polymers, which have hydrophobic groups, form physical cross-links, hence they may be used as thickeners. The rheological behaviour is strongly influenced by various cosolutes; especially strong effects are due to surfactants and both a decrease and an increase in viscosity can occur. When the polymer-surfactant interactions are particularly strong, an associative phase separation can occur, like in the case where there is electrostatic attraction as well as hydrophobic; this and other types of phase separation phenomena are described. Except for linear ionic and nonionic polymers, the interactions between surfactants and cross-linked polymers, microgel particles and covalent macroscopic gels are analyzed, as well as the possibility of forming gel particles of interest for encapsulation purposes. Furthermore, the behavior of these mixed systems on surfaces is discussed. In particular, we consider the adsorption of mixtures of ionic polymers and oppositely charged surfactants on polar and nonpolar surfaces. Depending on concentration, an ionic surfactant can either induce additional polyion adsorption or induce desorption. Kinetic control of adsorption and, in particular, desorption is typical. Important consequences of this include an increased adsorption on rinsing and path dependent adsorbed layers. Recently, considerable attention has been given to the interaction between DNA and cationic surfactant, both as a means to understand the behaviour of DNA in biological systems and to develop novel formulations, for example for gene therapy. Here we review aspects such as DNA compaction, DNA covalent gels and DNA soft nanoparticles.  相似文献   

13.
The flocculation behavior of anionic and cationic latex dispersions induced by addition of ionic surfactants with different polarities (SDS and cetyltrimethylammonium bromide (CTAB)) have been evaluated by rheological measurements. It was found that in identical polar surfactant systems with particle surfaces of SDS + anionic lattices and CTAB + cationic lattices, a weak and reversible flocculation has been observed in a limited concentration region of surfactant, which was analyzed as a repletion flocculation induced by the volume-restriction effect of the surfactant micelles. On the other hand, in oppositely charged surfactant systems (SDS + cationic lattices and CTAB + anionic lattices), the particles were flocculated strongly in a low surfactant concentration region, which will be based on the charge neutralization and hydrophobic effects from the adsorbed surfactant molecules. After the particles stabilized by the electrostatic repulsion of adsorbed surfactant layers, the system viscosity shows a weak maximum again in a limited concentration region. This weak maximum was influenced by the shear rate and has a complete reversible character, which means that this weak flocculation will be due to the depletion effect from the free micelles after saturated adsorption.  相似文献   

14.
We report atomic force microscopy (AFM) measurements of the forces between borosilicate glass solids in aqueous mixtures of cationic and zwitterionic surfactants. These forces are used to determine the adsorption of the surfactant as a function of the separation between the interfaces (proximal adsorption) through the application of a Maxwell relation. In the absence of cationic surfactant, the zwitterionic surfactant N-dodecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate (DDAPS) undergoes little adsorption to glass at concentrations up to about 2/3 critical micelle concentration (cmc). In addition, DDAPS does not have much effect on the forces over the same concentration range. In contrast, the cationic surfactant dodecylpyridinium chloride (DPC) does adsorb to glass and does affect the force between glass surfaces at concentrations much lower than the cmc. In the presence of a small amount of DPC (0.05 mM = cmc/300), the net force between the glass surfaces is quite sensitive to the solution concentration of DDAPS. A model-independent thermodynamic argument is used to show that the surface excess of DDAPS depends on the separation between the glass interfaces when the cationic surfactant is present and that the surface excess of the cationic surfactant is more sensitive to interfacial separation in the presence of the zwitterionic surfactant. The change in adsorption of the zwitterionic surfactant is explained in terms of an intermolecular coupling between the long-range electrostatic force acting on the cationic surfactant and the short-range hydrophobic interaction between the alkyl chains on the cationic and zwitterionic surfactants. The adsorptions of cationic and zwitterionic surfactants in mixtures were measured independently and simultaneously by attenuated total internal reflection infrared spectroscopy (ATR-IR). The adsorption of the zwitterionic surfactant is enhanced by the presence of a small amount of cationic surfactant.  相似文献   

15.
Dilute mixed solutions of non-surface active anionic polymers (polyacrylamide and polystyrene sulfonate, xanthan) and various surfactants have been studied with several methods: surface tension, ellipsometry, X-ray and neutron reflectivity, thin film balance, surface and bulk rheology. A strong synergistic lowering of the surface tension is found with cationic surfactants in the concentration range where no appreciable complexation of surfactant and polymer occurs in the bulk solution (as seen from viscosity measurements). Despite appreciable differences between surface tension behaviour, the adsorbed layer is very similar for all the polymers: their thickness is small and the polymer chains are stretched along the surface. The surface tension behaviour of these polymers with non-ionic surfactants is also different. When the polymers are confined in thin films, the forces between surfaces are similar, and independent of surfactant nature: oscillatory forces are measured, which reflect the existence of a polymer network with a well defined mesh size. The connection of foam stability with surface and bulk complexation is far from clear.  相似文献   

16.
The formation of self-assembled monolayers (SAMs) of adsorbed cationic or anionic surfactant molecules on atomically flat H-terminated Si(111) surfaces in aqueous solutions was investigated by in situ AFM measurements, using octyl trimethylammonium chloride (C8TAC), dodecyl trimethylammonium chloride (C12TAC), octadecyl trimethylammonium chloride (C18TAC)) sodium dodecyl sulfate (STS), and sodium tetradecyl sulfate (SDS). The adsorbed surfactant layer with well-ordered molecular arrangement was formed when the Si(111) surface was in contact with 1.0x10(-4) M C18TAC, whereas a slightly roughened layer was formed for 1.0x10(-4) M C8TAC and C12TAC. On the other hand, the addition of alcohols to solutions of 1.0x10(-4) M C8TAC, C12TAC, or SDS improved the molecular arrangement in the adsorbed surfactant layer. Similarly, the addition of a salt, KCl, also improved the molecular arrangement for both the cationic and anionic surfactant layers. Moreover, the adsorbed surfactant layer with a well-ordered structure was formed in a solution of mixed cationic (C12TAC) and anionic (SDS) surfactants, though each surfactant alone did not form the well-ordered layer. These results were all explained by taking into account electrostatic repulsion between ionic head groups of adsorbed surfactant molecules as well as hydrophobic interaction between their alkyl chains, which increases with the increasing chain length, together with the increase in the hydrophobic interaction or the decrease in the electrostatic repulsion by incorporating alcohol molecules into the adsorbed surfactant layer, the decrease in the electrostatic repulsion by increasing the concentration of counterions, and the decrease in the electrostatic repulsion by alternate arrangement of cationic and anionic surfactant molecules. The present results have revealed various factors to form the well-ordered adsorbed surfactant layers on the H-Si(111) surface, which have a possibility of realizing the third generation surfaces with flexible structures and functions easily adaptable to circumstances.  相似文献   

17.
The effect of the anionic surfactant SDS (sodium dodecyl sulfate) on the adsorption behavior of cationic hydroxyethyl cellulose (Polymer JR-400) and hydrophobically modified cationic cellulose (Quatrisoft LM-200) at hydrophobized silica has been investigated by null ellipsometry and compared with the previous data for adsorption onto hydrophilic silica surfaces. The adsorbed amount of LM-200 is found to be considerably larger than the adsorbed amount of JR-400 at both surfaces. Both polymers had higher affinity toward hydrophobized silica than to silica. The effect of SDS on polymer adsorption was studied under two different conditions: adsorption of polymer/SDS complexes from premixed solutions and addition of SDS to preadsorbed polymer layers. Association of the surfactant to the polymer seems to control the interfacial behavior, which depends on the surfactant concentration. For the JR-400/SDS complex, the adsorbed amount on hydrophobized silica started to increase progressively from much lower SDS concentrations, while the adsorbed amount on silica increased sharply only slightly below the phase separation region. For the LM-200/SDS complex, the adsorbed amounts increased progressively from very low SDS concentrations at both surfaces, and no large difference in the adsorption behavior was observed between two surfaces below the phase separation region. The complex desorbed from the surface at high SDS concentrations above the critical micelle concentration. The reversibility of the adsorption of polymer/SDS complexes upon rinsing was also investigated. When the premixed polymer/SDS solutions at high SDS concentrations (>5 mM) were diluted by adding water, the adsorbed amount increased due to the precipitation of the complex. The effect of the rinsing process on the adsorbed layer was determined by the hydrophobicity of the polymer and the surface.  相似文献   

18.
The mechanisms of high-molecular-weight polyacrylamide nonionic homopolymer and 25 mol% anionic acrylate-substituted copolymer adsorption onto iron oxide particles were investigated via DRIFT and UV-vis spectroscopies at three pH values (6, 8.5, and 11). While electrostatic interactions play an important role in charged polymer adsorption, this information is not spectroscopically available. At pH values above and below pH 8.5 (the isoelectric point for the anionic polymer), bidentate chelation and hydrogen bonding were the main adsorption mechanisms. At the isoelectric point, monodentate chelation was observed to be the main mode of adsorption, along with hydrogen bonding. For the nonionic polymer, in all cases, hydrogen bonding through the carbonyl group was the main mode of adsorption. The adsorption of both polymers conformed well to the Freundlich model, suggesting that the adsorbed polymer amount increases with increasing polymer concentration up to 7500 g/t solid, rather than approaching monolayer coverage. Spectroscopic evidence was found to suggest that hydrolysis of nonionic polyacrylamide occurs at high pH.  相似文献   

19.
Adsorbed polymer and polyelectrolyte layers on colloidal silica nanoparticles have been studied in the presence of various salts and surfactants using photon correlation spectroscopy and solvent relaxation NMR. Poly(ethylene oxide) (PEO; molar mass 103.6 kg mol (-1)) adsorbed with a relatively high affinity and gave a layer thickness of 4.2 +/- 0.2 nm. While the nonionic surfactant used only increased this thickness slightly, anionic surfactants had a much greater effect, mainly due to repulsions between adsorbed aggregates, leading to expansion of the layer. A nonionic/anionic surfactant mixture was also tested and resulted in a larger increase in layer thickness than any of the individual surfactants. The dominant factor on addition of salt was generally the reduced solvency of PEO, which resulted in a further increase in the layer thickness but in some cases caused flocculation. This was not the case when the surfactant was sodium dodecylbenzenesulfonate; instead screening of the intermicellar repulsions possibly combined with surfactant-cation binding resulted in a reduction in the layer thickness. In comparison the affinity between silica and sodium polystyrenesulfonate was very weak. Anionic surfactants and salts did not noticeably increase the strength of adsorption, but instead encouraged flocculation. The situation was different with a nonionic surfactant, which was able to adsorb to silica itself and apparently facilitated a degree of polyelectrolyte adsorption as well.  相似文献   

20.
Adsorption of surfactant mixtures on solids is of considerable theoretical and practical importance. In this study, cooperative adsorption of surfactant mixtures of nonyl phenol ethoxylated decyl ether (NP-10) and n-dodecyl-beta-D-maltoside (DM) on silica and alumina has been investigated as a function of the distribution of individual surfactants between solution and solid surface. In the mixed adsorption process, DM is identified to be the "active" adsorbing component and NP is the "passive" co-adsorbing one in the process of adsorption on alumina, while their roles are reversed on silica. A modified model has been proposed to quantify the adsorption behavior of surfactant mixtures and to obtain information in terms of aggregation number and standard free energy for surface aggregation. This model is the first model applied to the aggregation of the surfactant mixture at the solid/solution interfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号