首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Summary An equation for the unidimensional confined diffusion is proposed. The equation coincides with the well-known homogeneous equation except the presence of a source term. This term which has the form of a dipole distribution is located on a moving front which sharply separates two distinct regions. In the first region (from the boundary up to the front) the confined solution coincides with a suitable solution of the homogeneous equation; in the second region (besides the front) it vanishes. The source term, moreover, switches off the diffusing flux at the front. The sharp confinement allows to relax the original boundary conditions of the homogeneous equation. Precisely, to the function depending on the time at the boundary, another arbitrary function depending on the space at the initial time is added. This new function (provided not vanishing) allows to obtain in general an acceptable evolution of the front and does not prevent the validity of the conservation law: flux at the boundary is equal to the time variation of the diffusing quantity contained between the boundary and the front. By a suitable choice of this new function, so that it results to be connected to the other boundary condition (that depending on time) it is possible to arrive at an evolution of the front such as: , where λ,K, corresponding, respectively, to a dimensionless parameter and diffusivity, depend on the medium. Under such simplifying assumption, it is possible to obtain an analytical expression for the confined solution. This solution, evaluated in a point of the space, arrives asymptotically at the same value reached by the solution of the homogeneous equation.  相似文献   

3.
The establishment of the steady-state dopant profile in a medium with a time-variable diffusion coefficient is considered within the approach proposed previously for estimating mass-and heat-transfer time characteristics. It is shown that the time it takes for the equilibrium concentration to set in may be increased or decreased by appropriately choosing the law of variation of the diffusion coefficient.  相似文献   

4.
Basic ideas and results which characterize quantum diffusion of defects in quantum crystals like solid helium as a new phenomenon are presented. Quantum effects in such media lead to a delocalization of point defects (vacancies, impurities etc.) and they turn into quasiparticles of a new type—defectons, which are characterized not by their position in the crystal lattice but by their quasimomentum and dispersion law. Defecton-defecton and defecton-phonon scattering are considered and an interpolation formula for the diffusion coefficient valid in all interesting temperature and concentration regions is presented. A comparison with the experimental data is made. Some alternative points of view are discussed in detail and the inconsistency of the Kisvarsanyi-Sullivan theory is shown.  相似文献   

5.
6.
We devote this work to investigate the solutions of a generalized diffusion equation which contains spatial fractional derivatives and nonlinear terms. The presence of external forces and absorbent terms is also considered. The solutions found here can have a compact or long tail behavior and, in particular, for the last case in the asymptotic limit, we relate these solutions to the Lévy or Tsallis distributions. In addition, from the results presented here a rich class of diffusive processes, including normal and anomalous ones, can be obtained.  相似文献   

7.
A solution to the equation of grain-boundary diffusion is obtained under conditions where migration of the diffusant from the boundaries into the grains is absent and the diffusion coefficient decreases with time from an increased value to a value characteristic of equilibrium grain boundaries. The specific features of the grain-boundary diffusion in nanocrystals are qualitatively analyzed in terms of this solution.  相似文献   

8.
Knowledge of the limits of the principal Harrison kinetics regimes (Types A, B and C) for grain boundary diffusion is very important for the correct analysis of depth profiles in a tracer diffusion experiment. These regimes for self‐diffusion have been extensively studied in the past by making use of the phenomenological lattice Monte Carlo (LMC) method with the result that the limits are now well established. However, the relationship of these self‐diffusion limits to the corresponding ones for solute diffusion in the presence of solute segregation to the grain boundaries remains unclear. In the present study, the influence of solute segregation on the limits was investigated with the LMC method for the well‐known parallel grain boundary slab model by showing the equivalence of two diffusion models. It is shown which diffusion parameters are useful for identifying the limits of the Harrison kinetics regimes for solute grain boundary diffusion. It is also shown how the measured segregation factor from the diffusion experiment in the Harrison Type‐B kinetics regime may differ from the global segregation factor.  相似文献   

9.
The theory of diffusion gradient-weighted MRI (DGWI) is presented in this paper. The Bloch-Torrey equation was modified to include the effect of intravoxel spatial-location variation of water diffusion (diffusion gradient) on MRI signal, in addition to the effect of intravoxel spatial-direction variation of water diffusion (diffusion anisotropy). An analytical solution for a diffusion-encoding spin-echo pulse sequence was derived. Unlike water diffusion which attenuates the image signal intensity, this newly derived solution relates the spatial gradient of the water diffusion with the phase of the image signal. This novel MRI technique directly measures both the water diffusion and its spatial gradient, and thus offers a noninvasive imaging tool to simultaneously investigate the intravoxel inhomogeneity and anisotropy of tissue structures. In addition, as demonstrated with our preliminary data, this new method may be utilized to delineate the interfaces of tissues with different diffusion. This method is an extension of the successful diffusion tensor MRI (DTI), but requires no additional data acquisition. In addition to the measured diffusion tensor, this new method provides measurements of the spatial derivatives of the three principal diffusivities of the tensor, thereby providing additional information for improving white matter fiber tractography.  相似文献   

10.
Examining the rotational diffusion of a microparticle suspended in a soft material opens up exciting new opportunities for locally probing the frequency-dependent linear viscoelastic shear modulus, G*(omega). We study the one-dimensional rotational diffusion of a wax microdisk in an aqueous polymer entanglement network using light streak tracking. By measuring the disk's time-dependent mean square angular displacement, , we predict the polymer solution's G*(omega) using a rotational generalized Stokes-Einstein relation. The good agreement of the predicted modulus with mechanical measurements confirms this new microrheological approach.  相似文献   

11.
We present the results of the planar diffusion of a Dirac particle by step and barrier potentials, when the incoming wave impinges at an arbitrary angle with the potential. Except for right-angle incidence this process is characterized by the appearance of spin flip terms. For the step potential, spin flip occurs for both transmitted and reflected waves. However, we find no spin flip in the transmitted barrier result. This is surprising because the barrier result may be derived directly from a two-step calculation. We demonstrate that the spin flip cancellation indeed occurs for each “particle” (wave packet) contribution.  相似文献   

12.
13.
We study the properties of the "rigid Laplacian" operator; that is we consider solutions of the Laplacian equation in the presence of fixed truncation errors. The dynamics of convergence to the correct analytical solution displays the presence of a metastable set of numerical solutions, whose presence can be related to granularity. We provide some scaling analysis in order to determine the value of the exponents characterizing the process. We believe that this prototype model is also suitable to provide an explanation of the widespread presence of power law in a social and economic system where information and decision diffuse, with errors and delay from agent to agent.  相似文献   

14.
15.
Kinematic simulations of turbulent pair diffusion in planar turbulence with a k(-5/3) energy spectrum reproduce the laboratory results of Jullien et al. [Phys. Rev. Lett. 82, 2872 (1999)]], in particular the stretched exponential form of the probability density function of pair separations and their correlation functions. The root mean square separation is found to be strongly dependent on initial conditions for very long stretches of time. This dependence is consistent with the topological picture where pairs initially close enough travel together for long stretches of time and separate violently when they meet straining regions around hyperbolic points. A new argument based on the divergence of accelerations is given to support this picture.  相似文献   

16.
We study both analytically and numerically the motion of a passive floating admixture subject to molecular collisions in a random velocity field. Within the framework of the one-dimensional model, we study the phenomena of relative molecular diffusion and the closely related fluctuations of the density of a cluster of particles that were initially located in the same physically infinitesimal volume. Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 43, No. 4, pp. 456–467, September, 2000.  相似文献   

17.
Evidence is presented that diffusion drives colliding many-particle systems at relativistic energies from the initial δ–functions in rapidity towards the equilibrium distribution. Analytical solutions of a linear Fokker-Planck equation represent rapidity spectra for participant protons in central heavy-ion collisions at SPS-energies accurately. Thermal equilibrium in the interaction region is not attained, nonequilibrium features persist and can account for the broad rapidity spectra. Received: 24 November 1998 / Revised version: 20 February 1999  相似文献   

18.
An Ornstein-Uhlenbeck process in a periodic potential inR d is considered. It has been shown previously that this process satisfies a central limit theorem in the sense that, by rescaling space and time in a suitable way, the distribution of the process converges to that of a Wiener process with nonsingular diffusion matrix. Here a rigorous proof is given of a version of Einstein's formula for this model, relating the diffusion constant to the mobility of the system.  相似文献   

19.
Continuing our study of interrupted diffusion, we consider the problem of a particle executing a random walk interspersed with localized oscillations during its halts (e.g., at lattice sites). Earlier approaches proceedvia approximation schemes for the solution of the Fokker-Planck equation for diffusion in a periodic potential. In contrast, we visualize a two-state random walk in velocity space with the particle alternating between a state of flight and one of localized oscillation. Using simple, physically plausible inputs for the primary quantities characterising the random walk, we employ the powerful continuous-time random walk formalism to derive convenient and tractable closed-form expressions for all the objects of interest: the velocity autocorrelation, generalized diffusion constant, dynamic mobility, mean square displacement, dynamic structure factor (in the Gaussian approximation), etc. The interplay of the three characteristic times in the problem (the mean residence and flight times, and the period of the ‘local mode’) is elucidated. The emergence of a number of striking features of oscillatory diffusion (e.g., the local mode peak in the dynamic mobility and structure factor, and the transition between the oscillatory and diffusive regimes) is demonstrated.  相似文献   

20.
The uncertainty in the estimation of diffusion model parameters in diffusion tensor imaging (DTI) can be reduced by optimally selecting the diffusion gradient directions utilizing some prior structural information. This is beneficial for spinal cord DTI, where the magnetic resonance images have low signal-to-noise ratio and thus high uncertainty in diffusion model parameter estimation. Presented is a gradient optimization scheme based on D-optimality, which reduces the overall estimation uncertainty by minimizing the Rician Cramer-Rao lower bound of the variance of the model parameter estimates. The tensor-based diffusion model for DTI is simplified to a four-parameter axisymmetric DTI model where diffusion transverse to the principal eigenvector of the tensor is assumed isotropic. Through simulations and experimental validation, we demonstrate that an optimized gradient scheme based on D-optimality is able to reduce the overall uncertainty in the estimation of diffusion model parameters for the cervical spinal cord and brain stem white matter tracts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号