首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
张秦榕  王彬彬  张孟龙  严冬 《物理学报》2018,67(3):34202-034202
量子纠缠是量子信息处理和量子计算中不可或缺的物理资源,制备稳定可操控的量子纠缠是研究的热点之一.里德伯原子具有不同于普通中性原子的特点,长寿命和原子之间强烈的偶极相互作用,使得它成为量子信息处理和量子计算的最优候选者.本文在稀薄里德伯原子气体中,构建了空间四面体排布的里德伯原子模型(空间等距的四个原子模型),通过数值求解主方程来研究两体纠缠和里德伯激发的稳态和瞬态动力学性质,发现偶极阻塞机制下的量子纠缠最大,其他满足反偶极阻塞条件的高阶激发引起的纠缠较小,进而从理论上分析了这两种机制下量子纠缠的物理实质.  相似文献   

2.
鹿博  王大军 《物理学报》2019,68(4):43301-043301
目前对超冷原子的研究已经从最初的原子分子物理扩展到了物理的很多分支.极性分子可以将电偶极相互作用引入到超冷体系,同时分子又与原子类似,可以灵活地被光和其他电磁场操控,因而很多理论工作都预言了超冷极性分子在超冷化学、量子模拟和量子信息等领域会有重要的应用.但由于超冷基态分子的制备非常困难,如何把超冷物理从原子发展到分子还是一个方兴未艾的课题.过去的10年间,各种分子冷却技术都取得了很大突破,本文回顾了这些进展,并着重介绍了基于异核冷原子的磁缔合结合受激拉曼转移这一技术,该技术在制备高密度的基态碱金属超冷极性分子上取得了较大的成功.本文也总结了超冷极性碱金属分子基本碰撞特性研究的一些实验结果.  相似文献   

3.
We review recent theoretical advances in cold atom physics concentrating on strongly correlated cold atoms in optical lattices. We discuss recently developed quantum optical tools for manipulating atoms and show how they can be used to realize a wide range of many body Hamiltonians. Then, we describe connections and differences to condensed matter physics and present applications in the fields of quantum computing and quantum simulations. Finally, we explain how defects and atomic quantum dots can be introduced in a controlled way in optical lattice systems.  相似文献   

4.
新的物理现象的发现往往得益于新实验技术的发明,制冷技术的进步推动了包括凝聚态物理学和原子物理学等现代科学多个领域的重要发现,并促进了超导强磁铁、冷冻电镜等需要极低温度条件的新技术的发展.近年来,随着激光冷却技术的发明和不断发展,人们得以在极端低温下开展统计力学和量子力学相关的实验研究,迄今,人们已经实现了玻色-爱因斯坦凝聚态这种新奇的物态,并掌握了在单原子尺度开展量子调控研究的能力.同时,由于描述量子多体系统的希尔伯特空间的维度随系统粒子数呈指数增长,即便使用经典超级计算机处理此类问题也仍面临巨大困难,这使得基于超冷原子、离子、超导等体系的量子模拟研究成为热点.人们通过前所未有的调控能力制造人工量子系统,再直接调控并观测其量子相变过程,这为研究强关联量子系统提供了一条崭新的途径.在获得极限低温的道路上,基于热力学定律的传统制冷技术能够达到的温度极限在mK量级,但激光冷却技术却另辟蹊径,巧妙地运用光与原子的相互作用,将原子的温度降低到nK量级,这大大推动了基于超冷原子的量子模拟研究的发展.尽管激光冷却技术获得的超冷原子的温度是传统制冷技术远不能及的,但由于中性原子间相互作用强度很弱,转换...  相似文献   

5.
Atomic physics and hadron physics are both based on Yang Mills gauge theory; in fact, quantum electrodynamics can be regarded as the zero-color limit of quantum chromodynamics. I review a number of areas where the techniques of atomic physics provide important insight into the theory of hadrons in QCD. For example, the Dirac-Coulomb equation, which predicts the spectroscopy and structure of hydrogenic atoms, has an analog in hadron physics in the form of light-front relativistic equations of motion which give a remarkable first approximation to the spectroscopy, dynamics, and structure of light hadrons. The renormalization scale for the running coupling, which is unambiguously set in QED, leads to a method for setting the renormalization scale in QCD. The production of atoms in flight provides a method for computing the formation of hadrons at the amplitude level. Conversely, many techniques which have been developed for hadron physics, such as scaling laws, evolution equations, and light-front quantization have equal utility for atomic physics, especially in the relativistic domain. I also present a new perspective for understanding the contributions to the cosmological constant from QED and QCD.  相似文献   

6.
The paper presents a brief review of the scientific work performed by the authors in the field of quantum mechanics and atomic, laser, and mathematical physics. The following problems are considered: the semiclassical theory of tunneling and multiphoton ionization of atoms and ions in a strong electromagnetic field; generalization of the Keldysh ionization theory to the relativistic case; calculation of the Coulomb corrections to the ionization rate of atoms for arbitrary values of the adiabaticity parameter γ: from γ ≪ 1 (the adiabatic region) to γ ≫ 1, when the laser field changes its direction and magnitude many times during the time of flight of the electron through the barrier; the Lorentz ionization of atoms moving in a constant magnetic field; the WKB approximation and the imaginary time method for describing electron tunneling through a time-varying barrier; the Stark effect in a strong field; the energy spectrum of a hydrogen atom in a strong and superstrong magnetic field; quantization with account of the barrier transparency; creation of electron-positron pairs from vacuum in a constant electric or intense pulsed (laser) field and the dependence of the number of pairs on the intensity and frequency of the laser field; the Feynman method of disentanglement of noncommuting operators and its applications: transitions between atomic states in an alternating magnetic field (the Majorana problem); a quantum oscillator with time-dependent frequency; and a singular oscillator. The mathematical problems of quantum mechanics are considered: the fall of a particle to the center; modification of the Bohr-Sommerfeld quantization condition for potentials with a barrier and the Kramers matching conditions; divergence of perturbation series and their summation; eigenvalues of the Casimir operators for irreducible representations of Lie groups, including the SU(2), SU(3), and SU(6) groups, which are widely used in physics.  相似文献   

7.
This is an introductory review of the physics of topological quantum matter with cold atoms. Topological quantum phases, originally discovered and investigated in condensed matter physics, have recently been explored in a range of different systems, which produced both fascinating physics findings and exciting opportunities for applications. Among the physical systems that have been considered to realize and probe these intriguing phases, ultracold atoms become promising platforms due to their high flexibility and controllability. Quantum simulation of topological phases with cold atomic gases is a rapidly evolving field, and recent theoretical and experimental developments reveal that some toy models originally proposed in condensed matter physics have been realized with this artificial quantum system. The purpose of this article is to introduce these developments. The article begins with a tutorial review of topological invariants and the methods to control parameters in the Hamiltonians of neutral atoms. Next, topological quantum phases in optical lattices are introduced in some detail, especially several celebrated models, such as the Su–Schrieffer–Heeger model, the Hofstadter–Harper model, the Haldane model and the Kane–Mele model. The theoretical proposals and experimental implementations of these models are discussed. Notably, many of these models cannot be directly realized in conventional solid-state experiments. The newly developed methods for probing the intrinsic properties of the topological phases in cold-atom systems are also reviewed. Finally, some topological phases with cold atoms in the continuum and in the presence of interactions are discussed, and an outlook on future work is given.  相似文献   

8.
Many nonlinear quantum phenomena of intense laser-atom physics can be intuitively explained with the concept of trajectory. In this paper, Bohmian mechanics (BM) is introduced to study a multiphoton process of atoms interacting with the intense laser field: above-threshold ionization (ATI). Quantum trajectory of an atomic electron in intense laser field is obtained from the Bohm-Newton equation first and then the energy of the photoelectron is gained from its trajectory. With energies of an ensemble of photoelectrons, we obtain the ATI spectrum which is consistent with the previous theoretical and experimental results. Comparing BM with the classical trajectory Monte-Carlo method, we conclude that quantum potential may play a key role to reproduce the spectrum of ATI. Our work may present a new approach to understanding quantum phenomena in intense laser-atom physics with the image of trajectory.  相似文献   

9.
赵建刚  孙长勇  孟祥国  苏杰 《物理学报》2009,58(10):6985-6991
在压缩真空态光场和二能级原子玻色-爱因斯坦凝聚体相互作用系统中, 应用全量子理论, 分别在旋波近似和非旋波近似下, 研究了原子激光的压缩特性以及原子本征频率、光场-原子的耦合系数、光场初始压缩因子以及虚光场对原子激光压缩特性的影响. 研究表明,原子激光的两个正交分量均可被周期性压缩,原子的本征频率决定了原子激光两个正交分量涨落的量子Rabi频率,光场与原子的耦合系数决定了原子激光正交分量涨落的崩塌-回复振荡频率,当光场初始压缩因子增大和考虑虚光场效应时,原子激光正交分量的压缩深度均加深. 关键词: 玻色-爱因斯坦凝聚 压缩真空态 原子激光 虚光场效应  相似文献   

10.
原子通过激光冷却技术能够被制备在低温状态,这时冷原子云会展现出量子力学的波动性.研究了一束冷原子入射到一个蓝失谐的激光束上所表现出的量子力学隧穿效应.蓝失谐的激光束相对于冷原子而言等效于一个量子力学势垒.根据二能级模型,在理论上分析了具有内部结构的原子矢量物质波穿过激光束的量子力学反射与透射,特别是对原子穿越激光束所需的时间——量子隧穿时间进行了详细的研究.量子力学波动性使得冷原子穿越一个激光束时明显地展现出与经典粒子(热原子)不同的结果. 关键词: 冷原子 原子光学 量子隧穿  相似文献   

11.
Bose–Einstein condensed atomic gases are a new class of quantum fluids. They are produced by cooling a dilute atomic gas to nanokelvin temperatures using laser and evaporative cooling techniques. The study of these quantum gases has become an interdisciplinary field of atomic and condensed matter physics. Topics of many-body physics can now be studied with the methods of atomic physics. Many long-standing predictions of the theory of the weakly interacting Bose gas have been verified, including thermodynamic properties of the phase transition and dynamic properties such as shape oscillations and sound propagation. Stimulated light scattering was used to determine the dynamic structure factor both in the phonon and free-particle regime. Atomic Bose condensates show a variety of novel phenomena which include multi-component spinor condensates, magnetic domain formation, miscibility and immiscibility of quantum fluids, and finite-size effects.  相似文献   

12.
程存峰  杨国民  蒋蔚  潘虎  孙羽  刘安雯  成国胜  胡水明 《物理学报》2011,60(10):103701-103701
高强度的亚稳态惰性原子束流在原子分子物理实验研究中具有广泛的应用.使用射频电离方法和激光横向冷却技术制备了高强度的亚稳态氪原子束流,并使用数值模拟方法对横向冷却激光场中的原子径迹进行了分析.通过激光诱导荧光光谱方法测量原子束的束流特性,结果显示,横向冷却后在束流源下游230 cm处的原子束流强度达1.6atoms/(s*sr),束流强度提高了两个量级.利用这种高强度原子束流,我们成功囚禁了1.3×1010个亚稳态84Kr原子,同时冷原子装载速率达到了3.0×1011atoms/s;并利用该装置成功地实现了高亮度的亚稳态氩原子束和原子阱. 关键词: 横向冷却 原子束 原子阱 惰性气体  相似文献   

13.
The increasing level of experimental control over atomic and optical systems gained in recent years has paved the way for the exploration of new physical regimes in quantum optics and atomic physics, characterised by the appearance of quantum many‐body phenomena, originally encountered only in condensed‐matter physics, and the possibility of experimentally accessing them in a more controlled manner. In this review article we survey recent theoretical studies concerning the use of cavity quantum electrodynamics to create quantum many‐body systems. Based on recent experimental progress in the fabrication of arrays of interacting micro‐cavities and on their coupling to atomic‐like structures in several different physical architectures, we review proposals on the realisation of paradigmatic many‐body models in such systems, such as the Bose‐Hubbard and the anisotropic Heisenberg models. Such arrays of coupled cavities offer interesting properties as simulators of quantum many‐body physics, including the full addressability of individual sites and the accessibility of inhomogeneous models.  相似文献   

14.
The use of lasers for nuclear physics research is widespread and growing rapidly. The major impact in nuclear structure research has come from nuclear size and shape determinations for nuclei far from stability via high resolution isotope shift measurements. In addition, systematic data on nuclear magnetic and quadrupole moments have been obtained via the hyperfine splitting resolved in laser fluorescence studies of atomic spectra in both stable and unstable systems. The tunability, high intensity and inherent polarization of laser light can be used to polarize atomic nuclei for nuclear reaction studies. The rapid efficient polarization of unstable nuclei with lasers also presents opportunities for new research in nuclear physics. In this paper the physics of the laser interaction for the studies indicated will be introduced. Some examples of work completed and in progress will be presented primarily from on-line laser studies at charged particle accelerators. Extensions of current research, particularly with respect to possible studies of short-lived nuclei, are discussed and the synergistic effects of certain advances in quantum electronics and nuclear physics described.  相似文献   

15.
We present a coherent filtering scheme which dramatically reduces the site occupation number defects for atoms in an optical lattice by transferring a chosen number of atoms to a different internal state via adiabatic passage. With the addition of superlattices it is possible to engineer states with a specific number of atoms per site (atomic crystals), which are required for quantum computation and the realization of models from condensed matter physics, including doping and spatial patterns. The same techniques can be used to measure two-body spatial correlation functions.  相似文献   

16.
Recently, laser cooling methods have been extended from atoms to molecules. The complex rotational and vibrational energy level structure of molecules makes laser cooling difficult, but these difficulties have been overcome and molecules have now been cooled to a few microkelvin and trapped for several seconds. This opens many possibilities for applications in quantum science and technology, controlled chemistry, and tests of fundamental physics. This article explains how molecules can be decelerated, cooled and trapped using laser light, reviews the progress made in recent years, and outlines some future applications.  相似文献   

17.
王正岭  曹国荣  印建平 《物理学报》2008,57(10):6233-6239
提出了一种采用两套超大红失谐消逝波干涉和一束蓝失谐消逝波光场来实现原子二维表面微光阱阵列和原子有效强度梯度冷却的新方案,得到了二维表面微光阱阵列的光强分布和光学势分布.研究发现,二维表面微光阱阵列中微光阱的光学势能够有效地囚禁从标准磁光阱中释放的冷原子,并且被囚禁的冷原子能在蓝失谐消逝波光场的作用下产生有效的强度梯度Sisyphus冷却,对87Rb原子而言,原子温度能被冷却到2.56μK.该方案在冷原子物理、原子光学和量子光学领域中有着广阔的应用前景. 关键词: 消逝波干涉 微光阱阵列 原子囚禁 强度梯度冷却  相似文献   

18.
采用1064 nm多模30 W连续光纤激光器, 搭建了一个周期为25 μm的一维远失谐光学晶格势场. 对铷原子进行磁光阱装载和偏振梯度冷却, 实现了铷冷原子团在光晶格中的装载. 借助于短程飞行时间法, 测量晶格中冷原子温度为20 μK, 为下一步实现量子信息存储实验奠定了基础.  相似文献   

19.
We theoretically study the coupling of Bose-Einstein condensed atoms to the mechanical oscillations of a nanoscale cantilever with a magnetic tip. This is an experimentally viable hybrid quantum system which allows one to explore the interface of quantum optics and condensed matter physics. We propose an experiment where easily detectable atomic spin flips are induced by the cantilever motion. This can be used to probe thermal oscillations of the cantilever with the atoms. At low cantilever temperatures, as realized in recent experiments, the backaction of the atoms onto the cantilever is significant and the system represents a mechanical analog of cavity quantum electrodynamics. With high but realistic cantilever quality factors, the strong coupling regime can be reached, either with single atoms or collectively with Bose-Einstein condensates. We discuss an implementation on an atom chip.  相似文献   

20.
王育竹  徐震 《物理学进展》2011,25(4):349-358
这篇文章回顾了近20以来激光冷却原子气体的发展历史,同时概述了激光冷却的各种物理机制,还介绍了超冷原子物理在量子物理学和高科技应用中所取得的重要成就,包括气体原子的玻色-爱因斯坦凝聚、原子钟和原子干涉仪。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号