首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
非晶态物理与软磁材料的产业化   总被引:2,自引:0,他引:2  
周少雄  卢志超  陈金昌 《物理》2002,31(7):430-436
由于非晶态材料具有独特的结构和优异的性能,其发现和发展对相关传统材料及其应用领域产生了巨大的冲击和深远的影响。从1960年首次发现非晶合金至今已有40余年,基础研究和应用开发均取得长足进展,特别是作为软磁材料的非晶合金带材已经实现了产业化,并获得了广泛应用。文章综述了非晶态物理方面的一些基本问题,以及非晶办磁合金的发展历史和产业化现状。  相似文献   

2.
3.
《Comptes Rendus Physique》2018,19(5):271-284
Flows of granular media in air or in a liquid have been a research field for physicists for several decades. Sometimes solid, sometimes liquid, these particulate materials exhibit peculiar behaviors, which have motivated many studies at the frontiers between nonlinear physics, soft matter physics and fluid mechanics. This paper presents a summary of the recent advances in the field, with a focus on the development of continuous approaches, which make it possible to treat granular media as a complex fluid and to develop a granular hydrodynamics. We also discuss how the better understanding of granular flows we have today may help to address more complex materials, such as colloidal suspensions or some biological systems.  相似文献   

4.
Deicher  M.  Weyer  G.  Wichert  Th. 《Hyperfine Interactions》2003,151(1-4):105-123

Radioactive atoms have been used in solid state physics and in materials science for decades. Besides their classical applications as tracers for diffusion studies, nuclear techniques such as Mössbauer spectroscopy, perturbedγγ angular correlation,β-NMR, and emission channeling make use of nuclear properties (via hyperfine interactions or emittedα orβ particles) to gain microscopic information on structural and dynamical properties of solids. During the last decade, the availability of many different radioactive isotopes as clean ion beams at ISOL facilities like ISOLDE/CERN has triggered a new era involving methods sensitive to the optical and electronic properties of solids, especially in the field of semiconductor physics. This overview will browse through ongoing solid state physics experiments with radioactive ion beams at ISOLDE. A wide variety of problems is under study, involving bulk properties, surfaces and interfaces in many different systems like semiconductors, superconductors, magnetic systems, metals and ceramics.

  相似文献   

5.
One of the crowning achievements of mathematical, statistical physics over the past half century has been the discovery of the many aspects of structure of the critical point. It has been an exciting time and was only possible through the combined efforts of many excellent people. This article contains brief reviews of some of the parts in which I have been most interested and to which I have made some contributions.  相似文献   

6.
Imbibition phenomena have been widely used experimentally and theoretically to study the kinetic roughening of interfaces. We critically discuss the existing experiments and some associated theoretical approaches on the scaling properties of the imbibition front, with particular attention to the conservation law associated to the fluid, to problems arising from the actual structure of the embedding medium, and to external influences such as evaporation and gravity. Our main conclusion is that the scaling of moving interfaces includes many crossover phenomena, with competition between the average capillary pressure gradient and its fluctuations setting the maximal lengthscale for roughening. We discuss the physics of both pinned and moving interfaces and the ability of the existing models to account for their properties. Received 17 February 1999 and Received in final form 24 November 1999  相似文献   

7.
Small metallic particles with diameters in the range 1–100 nm have interesting properties which can sometimes be very different from those of bulk metals. Such colloidal particles play an important part in fields which range from catalysis to radiation damage in compound solids, and also have an intrinsic interest since in some respects they can be regarded as a state of matter intermediate between that of a molecule and a solid. In ionic crystals colloids can be produced either by irradiation or by the introduction of a stoichiometric excess of the metal constituent. In either case the colloids form as a result of the aggregation of fundamental point defects, but it is only fairly recently that a reasonably coherent picture of these processes has emerged and the properties of the colloids have been related to those of small metallic particles studied for other reasons. This review discusses the progress which has been made through the use of a large number of different techniques to study the properties of colloids in ionic crystals and related media such as glasses. Particular emphasis is placed on the optical, magnetic resonance and kinetic properties of colloids, and on the discussion of results in the wider context of the physics of small particles.  相似文献   

8.
Magnetic resonance methodology has made a significant impact in helping us understand the physics of porous media. Among an important class of experiments is that set of techniques designed to measure fluid dispersion. This paper provides some background on some of the underlying physics of dispersion, and outlines some of the NMR approaches that have proven successful. The local and nonlocal dispersion tensors are described and the prospects for future NMR advances considered.  相似文献   

9.
Karlsson  Erik 《Hyperfine Interactions》1985,25(1-4):681-700
The method of μSR is briefly described and its potential in the field of solidstate physics (especially metal physics) is discussed. Some examples from the fields of magnetism, spin relaxation and particle diffusion in metals are shown and comparisons with conventional hyperfine interaction methods are made for some areas of application.  相似文献   

10.
Physicists have long examined the fluid dynamics of swimming at low Reynolds number, but the main scope has rarely been to understand the behavior and ecology of microorganisms. However, many ecological questions about the functioning of small aquatic organisms can only be addressed by the application of formal fluid physics. Here, I examine resource acquisition mechanisms in small aquatic organisms, ranging from uptake of dissolved molecules to feeding on suspended particulate prey, and examine how organism behaviors and morphologies may be shaped by the often non-intuitive small-scale fluid physics.  相似文献   

11.
This paper reviews a new field of direct femtosecond laser surface nano/microstructuring and its applications. Over the past few years, direct femtosecond laser surface processing has distinguished itself from other conventional laser ablation methods and become one of the best ways to create surface structures at nano‐ and micro‐scales on metals and semiconductors due to its flexibility, simplicity, and controllability in creating various types of nano/microstructures that are suitable for a wide range of applications. Significant advancements were made recently in applying this technique to altering optical properties of metals and semiconductors. As a result, highly absorptive metals and semiconductors were created, dubbed as the “black metals” and “black silicon”. Furthermore, various colors other than black have been created through structural coloring on metals. Direct femtosecond laser processing is also capable of producing novel materials with wetting properties ranging from superhydrophilic to superhydrophobic. In the extreme case, superwicking materials were created that can make liquids run vertically uphill against the gravity over an extended surface area. Though impressive scientific achievements have been made so far, direct femtosecond laser processing is still a young research field and many exciting findings are expected to emerge on its horizon.  相似文献   

12.
《Current Applied Physics》2015,15(8):885-891
Proper inclusion of van der Waals (vdW) interactions in theoretical simulations based on standard density functional theory (DFT) is crucial to describe the physics and chemistry of systems such as organic and layered materials. Many encouraging approaches have been proposed to combine vdW interactions with standard approximate DFT calculations. Despite many vdW studies, there is no consensus on the reliability of vdW methods. To help further development of vdW methods, we have assessed various vdW functionals through the calculation of structural properties at equilibrium, such as lattice constants, bulk moduli, and cohesive energies, for bulk solids, including alkali, alkali-earth, and transition metals, with BCC, FCC, and diamond structures as the ground state structure. These results provide important information for the vdW-related materials research, which is essential for designing and optimizing materials systems for desired physical and chemical properties.  相似文献   

13.
林肇华 《物理学进展》2011,9(2):213-227
已有的根据量子力学和固体理论基本原理处理分子和固体结合特性的理论方法,受所研究对象的大小和对称性的限制,至今还不可能很好地处理许多低对称性系统问题。最近十年以来,一种建立在密度泛函理论基础上的新的理论方法则提供了这一可能。事实表明,它可以成功地说明低对称性系统的许多特性和现象。特别是加上一定的修正之后,该理论可以获得和实验资料定量上或半定量上一致的结果。本文将结合杂质原子与金属相互作用问题,介绍并讨论这一新的理论方法。  相似文献   

14.
等离激元是金属中自由电子的集体振荡,其在物理,生物、化学、能源、信息等领域具有重要的应用前景.近些年来对等离激元量子效应研究的深入开展使得等离激元研究迈入了新阶段.本文首先简要介绍了等离激元的两个基本特性:光压缩效应和局域电场增强效应;随后回顾了量子等离激元方面的最新的进展,包括量子纠缠效应,量子尺寸效应,量子遂穿效应,等离激元在台阶势垒处的反射与激发,等离激元对电子相干效应的增强;最后对量子等离激元研究进行了总结和展望.  相似文献   

15.
若干In2Se3 化合物的晶体结构与电子特性   总被引:1,自引:0,他引:1       下载免费PDF全文
等离激元是金属中自由电子的集体振荡,其在物理,生物、化学、能源、信息等领域具有重要的应用前景。近些年来对等离激元量子效应研究的深入开展使得等离激元研究迈入了新阶段。本文首先简要介绍了等离激元的两个基本特性:光压缩效应和局域电场增强效应;随后回顾了量子等离激元方面的最新的进展,包括量子纠缠效应,量子尺寸效应,量子遂穿效应,等离激元在台阶势垒处的反射与激发,等离激元对电子相干效应的增强;最后对量子等离激元研究进行了总结和展望。  相似文献   

16.
趋向统一发展的团簇科学   总被引:1,自引:0,他引:1  
王广厚 《物理》1998,27(6):338-343
团簇科学在发展过程中,从原子核物理、凝聚态物理和量子化学等引入许多概念和方法,构成团簇研究的中心议题,逐渐形成一门介于原子分子物理和凝聚态物理之间的交叉学科.文章就团簇结构和性质研究的某些最新进展进行了评述,并与原子核和量子点等的性质进行了比较.  相似文献   

17.
Recently, laser cooling methods have been extended from atoms to molecules. The complex rotational and vibrational energy level structure of molecules makes laser cooling difficult, but these difficulties have been overcome and molecules have now been cooled to a few microkelvin and trapped for several seconds. This opens many possibilities for applications in quantum science and technology, controlled chemistry, and tests of fundamental physics. This article explains how molecules can be decelerated, cooled and trapped using laser light, reviews the progress made in recent years, and outlines some future applications.  相似文献   

18.
尽管凝聚态物理、核物理和高能物理学的研究对象各不相同,它们的基本概念都是相通的。本文的目的,是从统一的观点来说明物理学的这些分支中的根本问题。希望这不仅有助于从一致的角度来理解各个领域,并且说明物理思想的沟通和借鉴,对于物理学的发展是重要的。  相似文献   

19.
This is an introductory review of the physics of topological quantum matter with cold atoms. Topological quantum phases, originally discovered and investigated in condensed matter physics, have recently been explored in a range of different systems, which produced both fascinating physics findings and exciting opportunities for applications. Among the physical systems that have been considered to realize and probe these intriguing phases, ultracold atoms become promising platforms due to their high flexibility and controllability. Quantum simulation of topological phases with cold atomic gases is a rapidly evolving field, and recent theoretical and experimental developments reveal that some toy models originally proposed in condensed matter physics have been realized with this artificial quantum system. The purpose of this article is to introduce these developments. The article begins with a tutorial review of topological invariants and the methods to control parameters in the Hamiltonians of neutral atoms. Next, topological quantum phases in optical lattices are introduced in some detail, especially several celebrated models, such as the Su–Schrieffer–Heeger model, the Hofstadter–Harper model, the Haldane model and the Kane–Mele model. The theoretical proposals and experimental implementations of these models are discussed. Notably, many of these models cannot be directly realized in conventional solid-state experiments. The newly developed methods for probing the intrinsic properties of the topological phases in cold-atom systems are also reviewed. Finally, some topological phases with cold atoms in the continuum and in the presence of interactions are discussed, and an outlook on future work is given.  相似文献   

20.
王立锋  叶文华  陈竹  李永升  丁永坤  赵凯歌  张靖  李志远  杨云鹏  吴俊峰  范征锋  薛创  李纪伟  王帅  杭旭登  缪文勇  袁永腾  涂绍勇  尹传盛  曹柱荣  邓博  杨家敏  江少恩  董佳钦  方智恒  贾果  谢志勇  黄秀光  傅思祖  郭宏宇  李英骏  程涛  高振  方丽丽  王保山  王英华  曾维新  卢艳  旷圆圆  赵振朝  陈伟  戴振生  谷建法  葛峰峻  康洞国  张桦森  乔秀梅  李蒙  刘长礼  申昊  许琰  高耀明  刘元元  胡晓燕  徐小文  郑无敌  邹士阳  王敏  朱少平  张维岩  贺贤土 《强激光与粒子束》2021,33(1):012001-1-012001-60
激光聚变有望一劳永逸地解决人类的能源问题,因而受到国际社会的普遍重视,一直是国际研究的前沿热点。目前实现激光惯性约束聚变所面临的最大科学障碍(属于内禀困难)是对内爆过程中高能量密度流体力学不稳定性引起的非线性流动的有效控制,对其研究涵盖高能量密度物理、等离子体物理、流体力学、计算科学、强冲击物理和高压原子物理等多个学科,同时还要具备大规模多物理多尺度多介质流动的数值模拟能力和高功率大型激光装置等研究条件。作为新兴研究课题,高能量密度非线性流动问题充满了各种新奇的现象亟待探索。此外,流体力学不稳定性及其引起的湍流混合,还是天体物理现象(如星系碰撞与合并、恒星演化、原始恒星的形成以及超新星爆炸)中的重要过程,涉及天体物理的一些核心研究内容。本文首先综述了高能量密度非线性流动研究的现状和进展,梳理了其中的挑战和机遇。然后介绍了传统中心点火激光聚变内爆过程发生的主要流体力学不稳定性,在大量分解和综合物理研究基础上,凝练出了目前制约美国国家点火装置(NIF)内爆性能的主要流体不稳定性问题。接下来,总结了国外激光聚变流体不稳定性实验物理的研究概况。最后,展示了内爆物理团队近些年在激光聚变内爆流体不稳定性基础性问题方面的主要研究进展。该团队一直从事激光聚变内爆非线性流动研究与控制,以及聚变靶物理研究与设计,注重理论探索和实验研究相结合,近年来在内爆重要流体力学不稳定性问题的解析理论、数值模拟和激光装置实验设计与数据分析等方面取得了一系列重要成果,有力地推动了该研究方向在国内的发展。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号