首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
Nitrostilbenes, nitrostyrenes, nitrotoluenes, and nitrodibenzyls in neutral, radical onion, and dianion forms are studied by quantum chemical, electron spectroscopy, ESR spectroscopy, and cyclic voltammetry methods. The calculated electron affinities of nitroarenes are compared with electrochemical reduction potentials. The dianion form of stilbene is stable provided that it has two nitro groups in the paraposition of the benzene ring. Nitrodibenzyls are converted to the corresponding nitrostilbenes by electrochemical reduction; this is explained by dissociative cleavage of C–H bonds in the trianion radical form of dibenzyl. In reactions of nitroarenes with bases, regioselectivity is determined by spin density distribution and by the conformation composition of the radical onions. Translated fromZhumal Strukturnoi Khimii, Vol. 39, No. 4, pp. 640–654, July–August, 1998.  相似文献   

2.
[reaction: see text] N,N-Di(6-azulenyl)-p-toluidine (1a) and N,N,N',N'-tetra(6-azulenyl)-p-phenylenediamine (2a) and their derivatives with 1,3-bis(ethoxycarbonyl) substituents on each 6-azulenyl group (1b and 2b) were prepared by Pd-catalyzed amine azulenylation and characterized as a study into new aromatic amines for multistage amphoteric redox materials. The redox behavior of each compound was characterized by cyclic voltammetry. These compounds undergo facile reduction to stable anion radicals and dianion diradicals owing to the resonance stabilization between the 6-azulenyl groups and exhibit electrochemical oxidation depending on the amine subunits. The ESR measurement of anion radicals and a dianion diradical generated by the electrochemical reduction of amine 1b and diamine 2b revealed that the unpaired electron of these radicals delocalizes over the entire azulene ring including the central nitrogen atoms. UV-vis spectral analysis of amines 1a,b and diamines 2a,b, taken during the electrochemical reduction, exhibited a gradual decrease of the absorption bands of the neutral species along with an increase of the new absorption maxima at 625, 605, 640, and 610 nm, respectively, with the development of well-defined isosbestic points at 502, 562, 478, and 545 nm, respectively. As indicated by a combined ESR and UV-vis spectral study, the species giving rise to the new absorption maxima are concluded to be the generation of anion radicals and dianion diradicals of aromatic amines and diamines with high thermodynamic stability.  相似文献   

3.
The synthesis, spectroscopic characterization, and fluorescence quenching efficiency of polymers and copolymers containing tetraphenylsilole or tetraphenylgermole with Si-Si, Ge-Ge, and Si-Ge backbones are reported. Poly(tetraphenyl)germole, 2, was synthesized from the reduction of dichloro(tetraphenyl)germole with 2 equivs of Li. Silole-germole alternating copolymer 3 was synthesized by coupling dilithium salts of tetraphenylsilole dianion with dichloro(tetraphenyl)germole. Other tetraphenylmetallole-silane copolymers, 4-12, were synthesized through the Wurtz-type coupling of the dilithium salts of the tetraphenylmetallole dianion and corresponding dichloro(dialkyl)silanes. The molecular weights (M(w)) of these metallole-silane copolymers are in the range of 4000 approximately 6000. Detection of nitroaromatic molecules, such as nitrobenzene (NB), 2,4-dinitrotoluene (DNT), 2,4,6-trinitrotoluene (TNT), and picric acid (PA), has been explored. A linear Stern-Volmer relationship was observed for the first three analytes, but not for picric acid. Fluorescence spectra of polymetalloles or metallole-silane copolymers obtained in either toluene solutions or thin polymer films displayed no shift in the maximum of the emission wavelength. This suggests that the polymetalloles or metallole-silanes exhibit neither pi-stacking of polymer chains nor excimer formation. Fluorescence lifetimes of polymetalloles and metallole-silanes were measured both in the presence and absence of TNT, and tau(o)/tau is invariant. This requires that photoluminescence quenching occurs by a static mechanism.  相似文献   

4.
《Comptes Rendus Chimie》2007,10(6):535-545
Voltammetric study of styryl-2 and styryl-4 pyrylium salts. Part 1. The redox properties of diphenyl-2,6 styryl-4 and diphenyl-4,6 stryl-2 pyrylium salts have been studied by means of cyclic voltammetry. These salts disclose irreversible reduction and oxidation steps that are characterised by one reduction peak and two oxidation peaks, respectively. The second oxidation peak vanishes when the switching potential is −0.75 V. The influence of water on the electrochemical behaviour of these salts as well as their degradation over several months has been studied.  相似文献   

5.
The electrochemical reduction of 1,9-dimethyldibenzo[b,f]pentalene has been investigated in DMF by both cyclic voltammetry (CV) and dc polarography. The influence of the depolarizer concentration and electrode material (Pt and Hg) was studied. It was found that the first electron transfer is a reversible one under most conditions studied, whereas the second electron transfer was irreversible on Pt and quasi-reversible on the HMD. An overall EDISP.EC mechanism was suggested and discussed. It turned out that the first reduction process was accompanied by a disproportionation of the anion-radical to its parent hydrocarbon and dianion. The experimental waves were analysed on the basis of various theoretical procedures.  相似文献   

6.
A new tetrathiafulvalene (TTF) derivative is synthesized, which is substituted with two phenoxy radicals on one 1,3-dithiole ring, and may have either open-shell diradical or closed-shell extended-quinoidal ground states. X-ray single crystal analysis and NMR measurements prove that this molecule has a closed-shell extended quinoidal structure both in the solid state and in solution. DFT calculations show the donor–acceptor electronic properties of this molecule with a well-separated HOMO–LUMO distribution and a small HOMO–LUMO energy gap. Because of this donor–acceptor character, this molecule gives both the dication and the dianion species by electrochemical oxidation and reduction. Furthermore, during the redox process between the neutral and dication states, this molecule exhibits unique changes in the cyclic voltammogram upon repeating the cycles or varying the scan rate. The observed electrochemical behavior is explained by the conformational changes in the electrochemically generated species, thus indicating that this molecule is classified as a dynamic redox system.  相似文献   

7.
One-and two-electron electrochemical oxidation of the (dppe)Ni(Cat) complexes (dppe is bis(diphenylphosphino)ethane, Cat is the sterically hindered catechol dianion) was studied. The transfer of the first electron proceeds reversibly to give paramagnetic species; parameters of their EPR spectra attest to a square planar geometry of one-electron oxidation products. The transfer of the second electron is irreversible because of co-proportionation of radical cations involving the initial complexes and the generated dications. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 1, pp. 99–102, January, 2007.  相似文献   

8.
1-Silafluorene dianion was synthesized by potassium reduction of 1,1-dichloro-1-silafluorene in refluxing THF. The X-ray structure of 1,1-dipotassio-1-silafluorene (3b) shows C-C bond length equalization in the five-membered silole ring and C-C bond length alternation in the six-membered benzene rings, indicating aromatic delocalization of electrons in the silole ring. The downfield (29)Si chemical shift at 29.0 ppm and theoretical calculations also support electron delocalization in the silole ring of 3b. Dianion salt 3b underwent nucleophilic reactions with Me(3)SiCl and EtBr to form the corresponding disubstituted products. Benzaldehyde underwent reductive coupling in the presence of 3b. Slow oxidation of 3b yielded 1,1'-dipotassio-1,1'-bis(silafluorene) (16). The X-ray structure and (29)Si chemical shift (-38.0 ppm) of 16 indicate localized negative charges at the silicon atoms and no aromatic character. Heating a DME/hexane solution of 3b in the presence of 18-crown-6 led to a novel diradical dianion salt.  相似文献   

9.
Five reaction stages have been identified in the reduction of pyracylene to its dianion. The same stages were also observed in the photochemical oxidation starting with the dianion. The formation of dimers of anions and of mixed valence aggregates is discussed.  相似文献   

10.
Classical polarography, cyclic voltammetry, and EPR spectroscopy was used to study electrochemical reduction and oxidation of 3-nitro derivatives of 2-methyl-4-phenylquinoline, the corresponding quinolinium perchlorates, and 1,2- and 1,4-dihydroquinolines. The nitro derivatives of quinoline and 1,2-dihydroquinoline are reduced in the first step at the nitro group; the quinolinium cations are reduced at the heterocycle followed by reduction of the nitro group; and in 1,4-dihydroquinolines, the nitro group is not reduced. Electrochemical reduction processes associated with electron transfer in the heterocycle mainly display the same behavior as established for pyridine derivatives. But important differences were observed in electrochemical oxidation: the N-methyl derivative of 1,4-dihydroquinoline is oxidized significantly more easily than the corresponding N-unsubstituted derivative of 1,4-dihydroquinoline (in the 1,4-dihydropyridine series, the difference in pot! enti als is fairly small), and even more easily than the corresponding N-methyl derivative of 1,2-dihydroquinoline.  相似文献   

11.
The mechanism of electrochemical reduction of decafluorobenzil on a platinum electrode in DMF was investigated by cyclic voltammetry. The first reduction peak corresponded to a reversible single-electron transfer leading to the formation of a relatively stable anion-radical whose ESR spectrum was registered and characterized. The second peak corresponded to the reduction of the anion-radical into an unstable dianion that quickly reacted with initial decafluorobenzil, and the arising species (or its transformation product) at the given potential underwent further reduction. The effect of fluorine on the potentials and on the mechanism of the electrochemical reduction of decafluorobenzil was considered.  相似文献   

12.
The electrochemical reduction of several substituted bianthrones is similar to that of the parent compound. 3,3′-Dimethylbianthrone (II), 3,3′-di-n-heptylbianthrone (III). 3,3′-dimethoxybianthrone (IV) and 1,1′-dimethylbianthrone -(V) were studied in dimethylformamide using cyclic voltammetry and transmission mode spectroelectrochemistry. For each compound the low temperature A form is reduced in a two-electron irreversible reaction to a twisted dianion, B2?. Upon oxidation, B2? forms first B, then B, whose spectral properties are identical to those of the high-temperature thermochromic form of the bianthrones. Rate constants for the B-A reaction were determined for each compound. The reduction of 2,3,2′,3′-dibenzo-7,7′-dimethylbianthrone (VI) showed somewhat different features which were tentatively interpreted in terms of redox catalysis.  相似文献   

13.
The electrochemical reduction of 3,3′-bi(2-R-5,5-dimethyl-4-oxopyrrolinylidene) 1,1′-dioxides (R = CF3, Me, Ph, But), which are cyclic dinitrons with conjugated C=C bond, in acetonitrile is an EE process producing stable radical anions and dianions, whereas the electrochemical oxidation is an EEC (R = Me, Ph) or EE process (R = But) with formation of radical cations (except for the case of R = CF3) and dications (R = But) stable under standard conditions. Radical cations of the dioxides with R = Me, Ph, and But and radical anions of the whole series of the compounds studied, including R = CF3, were characterized by ESR spectroscopy combined with electrochemical measurements and quantum-chemical calculations. The electrochemical behavior of the But-substituted dinitron is unique: the EE processes in the region of negative and positive potentials with formation of the dianion, radical anion, radical cation, and dication stable at T = 298 K were observed for the first time within one cycle of potential sweep in the CV curve measured in MeCN. __________ Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 5, pp. 1148–1154, May, 2005.  相似文献   

14.
A new methodology for creating electroactive components for organic batteries, based on the construction of a molecular platform including stable 3,4-dihydro-1,2,4,5-tetrazin-1(2H)-yl radicals was described. A series of 2-(4-R1-phenyl)-6-(4-R2-phenyl)-4-phenyl-3,4-dihydro-1,2,4,5-tetrazin-1(2H)-yls with substituents of various nature was obtained. It was shown that the substituents R1 in the aromatic ring at position 2 of the tetrazinyl fragment influence the value of the oxidation potential in the radical, but do not influence the value of the reduction potentials, while the substituent R2 of the aromatic ring at position 6 influence the values of the reduction potentials and practically do not influence oxidation potential values. Based on the obtained electrochemical data, a correlation structure–potential value was revealed for the cathodic and anodic process, with the help of which triarylsubstituted 3,4-dihydro-1,2,4,5-tetrazin-1(2H)-yl radicals with high values of the electrochemical gap were obtained.  相似文献   

15.
四(对-硝基)苯基卟啉锰配合物的光谱电化学性质   总被引:7,自引:1,他引:6  
应用循环伏安、现场紫外可见光谱和红外光谱电化学技术确认了四(对-硝基)苯基卟啉锰配合物产生不同氧化态锰卟啉的电位及其电子光谱和振动光谱特征,发现卟啉周环上硝基的还原发生在Mn2+还原之后,金属价态变化敏感带出现在1597、1523、1207、825和806cm-1附近。  相似文献   

16.
The electrochemical reduction of avarone (Q), an antitumor sesquiterpenoid quinone, was investigated at various pH in aqueous ethanol containing a cationic surfactant, cetyltrimethylammonium bromide (CTAB) by cyclic and rotating disc electrode voltammetry, using a glassy carbon electrode. Comparison of the electrochemical reduction of Q in presence of CTAB with the same process in a homogeneous water + ethanol solution shows an anodic shift of the reduction potential in the presence of CTAB; at pH > 9.5 and in presence of CTAB, two well-defined reduction peaks are observed, thus confirming one-electron reduction of Q, whereby the intermediate radical-anion is stabilized by the cationic micellar medium. The electrochemical oxidation of BNAH was investigated by cyclic voltammetry, and the anodic shift of the peak potential in presence of CTAB was observed. From the electrochemical behaviour of Q and BNAH, and the kinetics of the oxidation of BNAH with Q, it is suggested that the reaction takes place in two successive one-electron transfer steps. The application of the Marcus theory gives additional proof that, in this case, the first electron transfer is the rate determining step.  相似文献   

17.
The electrochemical behavior of maleic acid is studied on rotating disk electrodes and stationary electrodes of individual Cu, Cd, Pt, and Ta metals, Cu and Cd amalgams, and Cd alloys with Sn, Cu, In, Pb, Ni, and Ag in aqueous solutions and water mixtures with acetone, acetonitrile, ethanol, dimethylformamide, and pyridine. Basic kinetic parameters for the maleic acid reduction to succinic acid are determined. Depending on the solution composition, all three forms of maleic acid (nondissociated acid, monoanion, dianion) may undergo reduction. The difference between diffusion coefficients and kinetic reduction parameters of the acid and monoanion is insignificant and that of the monoanion and dianion is noticeable. This is due to an intramolecular hydrogen bond in the monoanion, which decreases the negative charge on its anion center. The effect the electrode nature and the mixed-media composition have on the maleic acid reduction kinetics is discussed  相似文献   

18.
The reductive electrochemistry of substituted benzophenones in the aprotic room-temperature ionic liquid (RTIL) 1-butyl-1-methylpyrrolidinium bistriflimide occurs via two consecutive one-electron processes leading to the radical anion and dianion, respectively. The radical anion exhibited electrochemical reversibility at all time-scales whereas the dianion exhibited reversibility at potential sweep rates of >or=10 V s(-1), collectively indicating the absence of strong ion-paring with the RTIL cation. In contrast, reduction in 1-butyl-3-methylimidazolium bistriflimide is complicated by proton-transfer from the [Bmim] cation. At low potential sweep rates, reduction involves a single two-electron process characteristic of either an electrochemical, chemical, electrochemical (ECE) or disproportion-type (DISP1) mechanism. The rate of radical anion protonation in [Bmim] is governed by basicity and conforms to the Hammett free-energy relation. At higher potential sweep rates in [Bmim][NTf2], reduction occurs via two consecutive one-electron processes, giving rise to the partially reversible generation of the radical anion and the irreversible generation of the dianion, respectively. Also, the redox potentials for the reversible parent/radical anion couples were found to be a linear function of Hammett substituent constants in both RTIL media and exhibited effectively equivalent solvent-dependent reaction constants, which are similar to those for reduction in polar molecular solvents such as acetonitrile or alcohols.  相似文献   

19.
The electrochemical reduction mechanisms of xanthylideneanthrone, 6, thioxanthylideneanthrone, 7, 10-(diphenylmethylene)anthrone, 8, and 9-(diphenylmethylene)-9H-fluorene, 9, have been studied in dimethylformamide. The reduction of the first two compounds proceeds from folded forms of the neutral to twisted forms of the anion radical according to a square scheme. The data for reduction of 8 can be well accounted for by the same square scheme. However, one-step reduction with concerted electron transfer and structural change cannot be ruled out. Compound 9, whose fluorene ring system cannot fold, exists only in twisted forms in the neutral, anion radical, and dianion. Consequently, there are no major changes in structure upon reduction, and the compound is reduced in two reversible steps with the second complicated by rapid loss of the dianion that is probably due to protonation by components of the medium.  相似文献   

20.
The electrochemistry of 16 different water-soluble porphyrins of the type [(TMpyP)M(II)]4+ (X-)4 or [(TMpyP)M(III)Cl]4+ (Cl-)4 is reported in nonaqueous media where TMpyP is the dianion of meso-tetrakis(N-methylpyridiniumyl)porphyrin and X- = Cl- or BPh4-. These studies were carried out to examine the effect of the metal ion and porphyrin counterion (X-) on the electrochemical properties of the TMpyP complexes with a special emphasis being given to the overall number of electrons added and the number of electrode processes upon reduction. All of the investigated compounds with electroinactive central metal ions undergo an overall addition of six electrons. This occurs for most compounds via three two-electron-transfer steps, but more than three processes are observed for porphyrins having metal ions with a low electronegativity (e.g., Cd(II)). The first reduction of each porphyrin having an M(II) ion or an electroinactive M(III) ion yields a porphyrin dianion which is characterized by an intense band located close to 800 nm, and this reversible reduction is followed by further reductions of the 1-methyl-4-pyridyl groups at more negative potentials. Four of the compounds with electroactive central metal ions, [(TMpyP)M(III)Cl]4+(Cl-)4 (M = Co, Fe, Mn, or Au), undergo an additional reversible M(III)/M(II) process prior to reactions involving the porphyrin pi-ring system and the 1-methyl-4-pyridyl substituents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号