首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
A simple separation method has been developed for thorium(IV) using poly-(dibenzo-18-crown-6) and column chromatography. The separation was carried out from ascorbic acid medium. The adsorption of thorium(IV) was quantitative from 0.001-0.01M ascorbic acid. The elution of thorium(IV) was quantitative with 4.0-8.0M HCl, 3.0-6.0M HClO4, 4.0-8.0M H2SO4 and 1.0-8.0M HBr. The capacity of poly-(dibenzo-18-crown-6) for thorium(IV) was found to be 1.379±0.01 m.mol/g of crown polymer. Thorium(IV) was separated from a number of cations in binary as well as in multicomponent mixtures. The method was extended to the determination of thorium in monazite sand. It is possible to separate and determine 5 ppm of thorium(IV) by this method. The method is very simple, rapid, selective and has good reproducibility (approximately ±2%).  相似文献   

2.
A selective and effective chromatographic separation method for thorium(IV) has been developed by using poly [dibenzo-18-crown-6] as stationary phase. The separations are carried out from glycine medium. The sorption of thorium(IV) was quantitative from 1 × 10?2 to 1 × 10?4 M glycine. The elution of thorium(IV) was quantitative with 2.0–8.0 M HCl, 4.0–7.0 M HBr, 1.0–2.0 M HClO4 and 5.0 M H2SO4. The capacity of poly [dibenzo-18-crown-6] for thorium(IV) was found to be 0.215 ± 0.01 mmol/g of crown polymer. The effect of concentration of glycine, metal ion, foreign ion and eluents has been studied. Thorium(IV) was separated from a number of cations in ternary as well as in multicomponent mixtures. The applicability of the proposed method was checked for the determination of thorium(IV) in real as well as geological sample. The method is simple, rapid, and selective with good reproducibility (approximately ±2 %).  相似文献   

3.
Vanillin forms insoluble complexes with thorium and cerium(IV) at pH 4.0–6.2 and 2.5–7.0 respectively. Thorium and cerium can be determined gravimetrically and separated from each other as well as from uranium(VI) and typical trivalent rare earths. The precipitates obtained are ignited to the corresponding oxide and weighed; as little as 4.4 mg of ThO2 and 4.9 mg of CeO2 can be determined.  相似文献   

4.
A simple column chromatographic method has been developed for the separation of thorium(IV) from associated elements using poly-(dibenzo-18-crown-6). The separations are carried out from picric acid medium. The adsorption of thorium(IV) was quantitative from 0.0005–0.05M picric acid. Amongst the various eluents tested, 2.0–8.0M HCl, HBr, 1.0–6.0M HClO4 and 5.0M acetic acid were found to be particularly efficient for the quantitative elution of thorium(IV). The capacity of poly-(dibenzo-18-crown-6) for thorium(IV) was found to be 1.29±0.01 mmol/g of crown polymer. Thorium(IV) was separated from a number of cations in binary mixtures in which most of the cations showed a very high tolerance limit. It was possible to separate thorium(IV) from a number of cations such as lanthanum(III), yttrium(III), uranium(VI), beryllium(II) and barium(II) in multicomponent mixtures. The method was extended to the determination of thorium in monazite sand. It is possible to separate and determine 5 ppm of thorium(IV) by this method. The method is very simple, rapid, selective and has good reproducibility (approximately ±2%).  相似文献   

5.
Thorium was quantitatively extracted with 0.1M Aliquat 336S at pH 4.5 from 0.01M ascorbic acid. It was then stripped with 2M hydrochloric acid. Thorium arsenazo III complex was determined spectrophotometrically at 655 nm. It was separated from binary and tertiary mixtures by exploiting the difference in distribution ratios of various elements from ascorbic acid media. Some separations were accomplished by selective stripping of thorium from nitric and hydrochloric acid. The method was extended for the analysis of thorium in monazite and gas mantles.  相似文献   

6.
A simple column chromatographic method has been developed for the separation of thorium from associated elements using poly-(dibenzo-18-crown-6). The separations are carried out from sodium nitrate medium. The adsorption of thorium was quantitative from 0.1-0.5M sodium nitrate. Amongst the various eluents tested, 1.0-8.0M HCl, HBr, H2SO4 and 3.0-8.0M HClO4 were found to be particularly efficient for e elution of thorium. The capacity of poly-(dibenzo-18-crown-6) for thorium was found to be 1.034 mmole/g of crown polymer. Thorium was arated from number of elements in binary mixtures in which most of the elements showed a very high tolerance limit. It was possible to separate tium from a number of elements in multicomponent mixtures. The method was extended to the determination of thorium in monazite sand and ga: artles. The method is very simple, rapid, selective and has good reproducibility (approximately±2%).  相似文献   

7.
Thorium(IV) was quantitatively extracted at pH 7.5 with 0.0001M of hexaacetato calix(6)arene in toluene and after stripping with 0.05M nitric acid, it was determined spectrophotometrically at 545 nm with thoron. Thorium(IV) was separated from commonly associated elements in fission products like uranium(VI), cesium(I), lead(II), strontium(II) and cerium(IV) in varying proportions. The method is simple, rapid, selective and applicable for the microgram concentrations of thorium(IV).  相似文献   

8.
Summary Thorium and zirconium can be quantitatively precipitated by quinaldinic acid atph 2.7 and 3, respectively. As the precipitates are of nonstoichiometric composition they are to be ignited to oxides. By this reagent thorium can be quantitatively separated from arsenic (As3+), mercury (Hg2+), rare earths, manganese, magnesium and alkaline earths and zirconium from all the aforesaid ions excepting rare earths which contaminate to a slight extent.  相似文献   

9.
Summary Thorium(IV) can be determined in the microgram range by photometric titration with EDTA in the presence of an approximately equivalent amount of the indicator Semi-Xylenol Orange at pH 2 (HClO4). Most other elements do not interfere. Interfering metal ions can be separated from thorium(IV) by electrolysis at a mercury pool cathode.
Zusammenfassung Mikrogrammengen Thorium(IV) lassen sich durch photometrische Titration mit EDTA in Anwesenheit einer äquivalenten Menge des Indikators Semixylenol-Orange bei pH 2 (HClO4) bestimmen. Die meisten anderen Metalle stören die Bestimmung nicht. Störende Metallionen können durch elektrolytische Abscheidung an einer Quecksilberkathode von Thorium (IV) abgetrennt werden.
  相似文献   

10.
In this study, the effects of various extraction parameters such as extractant types (Cyanex302, Cyanex272, TBP), acid type (nitric, sulfuric, hydrochloric) and their concentrations were studied on the thorium separation efficiency from uranium(VI), titanium(IV), lanthanum(III), iron(III) using Taguchi??s method. Results showed that, all these variables had significant effects on the selective thorium separation. The optimum separations of thorium from uranium, titanium and iron were achieved by Cyanex302. The aqueous solutions of 0.01 and 1 M nitric acid were found as the best aqueous conditions for separating of thorium from titanium (or iron) and uranium, respectively. The combination of 0.01 M nitric acid and Cyanex272 were found that to be the optimum conditions for the selective separation of thorium from lanthanum. The results also showed that TBP could selectively extract all studied elements into organic phase leaving thorium behind in the aqueous phase. Detailed experiments showed that 0.5 M HNO3 is the optimum acid concentration for separating of thorium from other elements with acidic extractants such as Cyanex272 and Cyanex302. The two-stage process containing TBP-Cyanex302 was proposed for separation thorium and uranium from Zarigan ore leachate.  相似文献   

11.
Thorium was extracted at pH 5.0 from 0.01 M malonic acid on a column of silica gel coated with Amberlite LA-1. Thorium was separated from alkali and alkaline earths, managenese, iron, cobalt, nickel, zinc, tin, in binary mixtures by taking advantage of the difference in the pH of formation of malonato complexes. Thorium was separated from zirconium, uranium, scandium, molybdenum, titanium, by exploiting the difference in the stability of malonato complexes. The method was extended for the analysis of thorium in monazite.  相似文献   

12.
A simple method is described for the solvent extraction of thorium. Thorium is extracted quantitatively from 5·10–3M sodium salicylate solution at pH 2.5–3.25 using 2.16·10–2M triphenylphosphine oxide as an extractant dissolved in toluene. The extracted metal ion is stripped with hydrochloric acid (0.1M) and determined spectrophotometrically with Thoron-1 at 540 nm. The method permits separation of thorium from lanthanum, cerium, neodymium, samarium and uranium from binary mixtures and is applicable to the analysis of monazite sand. The method is precise, accurate and selective.  相似文献   

13.
Summary Diphenic acid behaves as a selective reagent for the estimation of thorium in presence of phosphate, arsenate, molybdate, alkaline, earths, copper, cadmium, lead, bismuth, tin, aluminium, chromium, nickel, cobalt, zinc, manganese, magnesium and palladium. Thorium can be successfully separated from the cerite earths by the reagent from solutions having thoria: earth oxide ratio 126 by single precipitation and by double precipitation when the above ratio is 144. The reagent can separate thorium from solutions having ThO2U3O8 ratio upto 180 by double precipitation. The metal can also be recovered from monazite sands.Thanks are expressed hereby to Dr. A. K. Ghosal, Principal, Darjeeling Government College and Dr. A. K. Mukherjee of Indian Association for the Cultivation of Science, Calcutta, for their kind encouragement and to the Government of India, Ministry of Natural Resources and Scientific Research for a gift of Indian Monazite for analysis.  相似文献   

14.
Summary p-Nitrobenzene-azochromotropic acid (chromotrope 2 B) has been found useful as metal indicator in the titration of thorium ions against ethylenediaminetetraacetic acid. Titrations are best carried out with concentrations of thorium upto 0.001 M, within the pH range 1.5 and 2.9. Temperature has no effect on the end point. Many of the common ions interfere in the titration excepting lithium, sodium, potassium, gold, alkaline earths, zinc, mercury, aluminium, lead, nickel, and acetate. Iron(III) if present may be masked by the addition of ascorbic acid.
Zusammenfassung p-Nitrobenzol-azochromotropsäure (Chromotrope 2 B) wird als Metallindicator bei der komplexometrischen Titration von Thorium verwendet. Die besten Ergebnisse erhält man bei Konzentrationen bis 0,001 m im pH-Bereich von 1,5–2,9. Die Temperatur hat keinen Einfluß auf die Erkennung des Endpunkts. Lithium, Natrium, Kalium, Gold, Erdalkalien, Zink, Quecksilber, Aluminium, Blei, Nickel und Acetat stören nicht, während viele andere Ionen Störungen verursachen. Eisen(III) kann mit Ascorbinsäure maskiert werden.
  相似文献   

15.
Summary Complexometric titration of thorium with di-sodium versenate solution has been carried out using three dyes: SNADNS, di-SNADNS and nitroso-SNADNS obtained from chromotropic acid. Determinations are suitable with these dyes in the pH range from 2 to 3, the colour changes at the end point are very distinct with nitroso-SNADNS and di-SNADNS while the colour change with SNADNS at the end point is very difficult to detect. Study of interferences revealed that quite a number of elements like, lead, zinc, mercury, cobalt, nickel etc. do not interfere, whereas heavy interference is caused by iron, zirconium, copper, gold and alkaline earths, Thorium may be separated from them by precipitating it with phthalanilic acid obtained from o-anisidine and the thorium salt on breaking with acid may be determined by versene by the same method. This titrimetric method is expected to become more accurate if the final measurement at the end point is made spectrophotometrically rather than visually.  相似文献   

16.
A simple and selective spectrophotometric method has been developed for the extraction and separation of thorium(IV) from sodium salicylate media using Cyanex 272 in kerosene. Thorium(IV) was quantitatively extracted by 5 × 10−4 M Cyanex 272 in kerosene from 1 × 10−5M sodium salicylate medium. The extracted thorium(IV) was stripped out quantitatively from the organic phase with 4.0 M hydrochloric acid and determined spectrophotometrically with arsenazo(III) at 620 nm. The effect of concentrations of sodium salicylate, extractant, diluents, metal ion and strippants has been studied. Separation of thorium(IV) from other elements was achieved from binary as well as multicomponent mixtures such as uranium(VI), strontium(II), rubidium(I), cesium(I), potassium(I), Sodium(I), lithium(I), lead(II), barium(II), beryllium(II) etc. Using this method separation and determination of thorium(IV) in geological and real samples has been carried out. The method is simple, rapid and selective with good reproducibility (approximately ±2%).  相似文献   

17.
Coated wire ion selective electrode for thorium ion selective potentiometry was developed. Thorium ion selective coated wire electrodes were prepared by depositing a membrane comprising of Aliquat-336 loaded with Th(NO3)62− ions and poly vinyl chloride in varying proportion. A linear near-Nernstian response with a slope of −29.5 ± 0.3 mV over thorium concentration range of 1 × 10−1–3 × 10−5 M in constant total nitrate concentration of 6 M was obtained for the electrodes of almost all the composition studied. In spite of small drift in response potential from composition to composition, day to day as well as from electrode to electrode, the slope of potential response line was constant within experimental error. Moreover, the electrode once prepared could be conveniently used over a period of one and half month.  相似文献   

18.
《Analytical letters》2012,45(6):443-454
Abstract

Scandium was extracted at pH 5.0 from 0.01 M malonic acid on silica gel column impregnated with Amberlite LA-1. Nickel, zinc, cadmium, mercury, lead, tin, aluminium, and lanthanum in binary mixtures because they could not form malonato complexes. It was separated by the process of selective elution from elements such as zirconium, thorium, uranium, iron(III), gallium, indium, cerium(III), litanium by exploiting difference in stability of malonato complexes. Scandium was separated from multicomponent mixture containing yttrium, titanium, zironium, thorium, uranium and aluminium by a process of selective sorbtion and selective elution.  相似文献   

19.
Summary Thorium and zirconium have been determined gravimetrically with phenylglycine-p-carboxylic acid and zirconium alone with phenylglycine-o-carboxylic acid, almost within the same pH range. Better results are obtained when zirconium is precipitated in acetic acid solution in presence of a little ammonium acetate. A number of foreign ions may be separated from thorium and zirconium with these reagents. Iron and titanium cause heavy interference. The interference caused by iron, may however, be eliminated by adding a little ascorbic acid, before precipitation of the metals. The para acid can also extract thorium from a mixture of cerite earths and from monazite sands.Part V: See Z. anal. Chem. 158, 347 (1957).The author likes to thank Dr. B. N. Bose, Principal of the College and Dr. S. K. Sinha, the Head of the Department of Chemistry for their kind advice and encouragements.  相似文献   

20.
A new highly sensitive and selective chromogenic reagent, 2-(2,5-disulfonic-4-methoxyphenylazo)-7-(2-hydroxyl-5-carboxylphenylazo)-1,8-dihydroxynaphthalene-3,6-disulfonic acid (1), was synthesized and applied to the spectrophotometric determination of trace thorium. In 5 mL of a 6 M perchloric acid medium, which greatly increases the selectivity, thorium reacts with 1 to form a 1: 2 green complex, having a sensitive absorption peak at 670 nm. Under optimal conditions, Beer’s law is obeyed over the range from 0 to 0.8 μg/mL Th(IV) and the apparent molar absorptivity is 2.09 × 105 L/mol cm. It is found that, uranium(VI), Ti(IV), heavy rare earths, and most of other common metal ions do not interfere. The method has been tested on the determination of thorium in food samples with satisfactory results. The text was submitted by the authors in English.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号