首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An experimental investigation is carried out to study heat transfer characteristics of a rotating triangular thermosyphon, using R-134a refrigerant as the working fluid. The tested thermosyphon is an equilateral triangular tube made from copper material of 11?mm triangular length, 2?mm thickness, and a total length of 1,500?mm. The length of the evaporator section is 600?mm, adiabatic section is 300?mm, and condenser section is 600?mm. The effects of the rotational speed, filling ratio, and the evaporator heat flux on each of the evaporator heat transfer coefficient, he, condenser heat transfer coefficient, hc, and the overall effective thermal conductance, Ct are studied. Experiments are performed with a vertical position of thermosyphon within heat flux ranges from 11 to 23?W/m2 for the three selected filling ratios of 10, 30 and 50?% of the evaporator section volume. The results indicated that the maximum values of the tested heat transfer parameters of the rotational equilateral triangular thermosyphon are obtained at the filling ratio of 30?%. Also, it is found that the heat transfer coefficient of the condensation is increased with increasing the rotational speed. The tested heat transfer parameters of the thermosyphon are correlated as a function of the evaporator heat flux and angular velocity.  相似文献   

2.
A theoretical model has been developed to investigate the thermal performance of a continuous finned circular tubing of an air-to-air thermosyphon-based heat pipe heat exchanger. The model has been used to determine the heat transfer capacity, which expresses the thermal performance of heat pipe heat exchanger. The model predicts the temperature distribution in the flow direction for both evaporator and condenser sections and also the saturation temperature of the heat pipes. The approach used for the present study considers row-by-row heat-transfer in evaporator and condenser sections of the heat pipe heat exchanger.  相似文献   

3.
New experimental results present the effects of low-frequency vibrations in a horizontal heat pipe. The temperature difference between the evaporator and condenser of the heat pipe was measured under different heat transfer rates, filling ratios and frequencies. The low-frequency vibrations imposed a significant effect on the thermal performance as the best performance was achieved with the thermal resistance 0.05 K/W in the frequency 25 Hz.  相似文献   

4.
Generally, it is an economic advantage to operate a heat pipe in a condition where the ratio of heat flow rate, Q, to mass, m, is a maximum. It is shown that a maximum of the function Q/m may be obtained if the ratio between the evaporator and the condenser lengths is optimum. To achieve this optimization, all the other geometrical elements of the heat pipe and the heat transfer coefficients are considered constants, the only variables being the two lengths.  相似文献   

5.
Loop heat pipes are heat transfer devices whose operating principle is based on the evaporation and condensation of a working fluid, and which use the capillary pumping forces to ensure the fluid circulation. A series of tests have been carried out with a miniature loop heat pipe (mLHP) with flat evaporator and fin-and-tube type condenser. The loop is made of pure copper with stainless mesh wick and methanol as the working fluid. Detailed study is conducted on the start-up reliability of the mLHP at high as well as low heat loads. During the testing of mLHP under step power cycles, the thermal response presented by the loop to achieve steady state is very short. At low heat loads, temperature oscillations are observed throughout the loop. The amplitudes and frequencies of these fluctuations are large at evaporator wall and evaporator inlet. It is expected that the extent and nature of the oscillations occurrence is dependent on the thermal and hydrodynamic conditions inside the compensation chamber. The thermal resistance of the mLHP lies between 0.29 and 3.2°C/W. The effects of different liquid charging ratios and the tilt angles to the start-up and the temperature oscillation are studied in detail.  相似文献   

6.
This research is aimed at studying the two-phase flow pattern of a top heat mode closed loop oscillating heat pipe with check valves. The working fluids used are ethanol and R141b and R11 coolants with a filling ratio of 50% of the total volume. It is found that the maximum heat flux occurs for the R11 coolant used as the working fluid in the case with the inner diameter of 1.8 mm, inclination angle of ?90?, evaporator temperature of 125?C, and evaporator length of 50 mm. The internal flow patterns are found to be slug flow/disperse bubble flow/annular flow, slug flow/disperse bubble flow/churn flow, slug flow/bubble flow/annular flow, slug flow/disperse bubble flow, bubble flow/annular flow, and slug flow/annular flow.  相似文献   

7.
The performance of heat pipe solar collector is investigated theoretically and experimentally. The system employs wick-assisted heat pipe for the heat transfer from the absorber (evaporator) to a heat exchanger (condenser). The heat pipe is made with a copper tube and the evaporator section is finned with aluminium plate. Theoretical model predicts the outlet water from heat exchanger, heat pipe temperature and also the thermal efficiency of solar collector. The results are compared with experimental data.  相似文献   

8.
The heat transfer performance of a miniature heat pipe system (MHPS) used for cooling a desktop computer processor is presented in this paper. The MHPS consists of 6 parallel cylindrical miniature heat pipes (MHPs) which are connected to a copper block at the evaporator section and which are provided with 15 parallel perpendicular copper sheets at the condenser section, used as external cooling fins. Acetone and ethanol are used as working fluids. As heat source a processor is employed which is attached to the copper block. Heat transfer characteristics of the individual MHPs and the complete MHPS using the two working fluids are experimentally determined. The results show that the maximum and steady state temperature of the processor has been significantly reduced by using MHPs with acetone, more than with ethanol, instead of a conventional finned aluminum heat sink with cooling fan. Additional use of a fan results in a much lower processor temperature for both working fluids.  相似文献   

9.
The aim of this study is to investigate the heat-transfer characteristics of a top heat mode closed-loop oscillating heat pipe with a check valve (THMCLOHP/CV). Water and ethanol are used as the working fluids at various working temperatures. The results show that the specific heat flux increases significantly when the working temperature increases and when the aspect ratio of the evaporator length L e to the pipe diameter d decreases for the pipe filling ratio varying from 30 to 80%. The maximum specific heat flux equal to 786.34 W/m2 is reached with the use of ethanol as the working fluid at L e /d = 25, angle of inclination to the horizontal axis 90°, and filling ratio of 80%.  相似文献   

10.
The present experimental study investigates the controlling mechanism involved in a new combined vertical film-type absorber-evaporator exchanger operating near the condition of the triple point of water. This peculiar exchanger plays the most important role in the VFVPE process that can be utilized in many industrial applications, water pollution prevention, desalination, and purification of chemicals, for example. The method of analogy of the heat and mass transfer near the film surface is used to calculate the interfacial concentration and temperature, and thus determining the heat and mass transfer coefficients. It is shown that the working temperature level has the negligible effect on the characteristics of the mass transfer. The mass transfer coefficients are higher than those obtained in the case of isothermal absorption due to the convective effect arisen from vapor absorption in the falling solution film. The water flow rate in the evaporator side has a minor effect on the performance of this combined exchanger. The overall mean heat transfer coefficient remains nearly constant in the lower range of the solution flow rate of the absorber; however, it would increase with increasing solution flow rate in the higher range. The correlating equations for both the heat and mass transfer coefficients are suggested.  相似文献   

11.
以甲醇为工质,采用高速数据采集系统测定了微型热驱动回路在不同运行参数下的压力 及温度脉动,其脉动周期及脉动幅度随蒸发段热流密度的增加而减小. 实验发现,在蒸发段 热流密度较低的情况下,蒸气管中是泡状流或弹状流交替存在,而在蒸发段热流密度较高时, 蒸气管中为环状流. 就位差对热性能的影响进行了详细的实验研究,并在冷凝器空气自 然对流和强迫对流情况下,以加热块温度90${^\circ}$C为上限,得出微通道蒸发器和冷凝 器在不同位差下的最大蒸发段热流密度. 通过对实验现象的观察及分析,以期开发出适用于 未来电子产品高功率需求的微型化电子冷却器.  相似文献   

12.
In order to optimize the structure of a CPL evaporator and enhance heat transfer, a mathematical and physical model is developed to analyze the flow and heat transfer in the porous wick of the evaporator, whose calculation domain is divided into two parts: vapor-saturated region and liquid-saturated region. The characteristics of flow and heat transfer in the porous wick of a CPL evaporator have been numerically studied according to the field synergy principle. The influences of geometrical structures and heat flux on heat transfer enhancement are analyzed and illustrated by the figures in the present paper.  相似文献   

13.
The working pair zeolite-water has very good characteristics for the heat pump application. It is non-poisonous, non-flammable and low-corrosive so that the use of a zeolite-water heat pump in the large field of domestic heating is very promising. The poor heat and mass transfer of the zeolite has to be considered by an appropriate design of the adsorber heat exchanger. Compact zeolite layers directly linked with the heat exchanger enable a high specific thermal output (thermal output related to the mass of zeolite) which is the main shortcoming of these machines. Additionally the coefficient of performance (COP) can be improved significantly by a modular design of the machine consisting of six to eight heat pump modules. Due to the periodical operating mode which is required by the zeolite-water pair the single module is built up in a simple way without any moving parts. The different modules, each of them operating in another phase of the sorption cycle, are connected in series by a heat transfer medium circuit so that a continuous thermal output together with high COP is achieved by this zeolite-water heat pump. First experimental investigations focus on the layout of the different components of the heat pump, e.g. the single module, the adsorber/desorber and the evaporator/condenser. The paper will present the design of these components as well as the design of the entire modular machine. Furthermore there will be a theoretical discussion of the COPs of the modular heat pump depending on the ambient temperature, on the number of modules and on the heating system. Received on 12 November 1998  相似文献   

14.
Convective heat transfer at constant heat flux through unconsolidated porous media has been studied both experimentally and theoretically. Heat transfer measurements have been performed for convective heat transfer over a wide range of operational parameters at constant heat fluxes. In addition to heat transfer coefficients, pressure drop and temperature profiles both in radial and axial direction have been recorded. The equations of motion and energy which account for the non-Darcian effect are used to describe the flow and convective heat transfer through the porous medium. Mathematical models for the prediction of heat transfer coefficients and temperature profiles are presented which predict the experimental data with good accuracy.  相似文献   

15.
Two-dimensional (circumferential and axial) wall temperature distributions were measured for top-heated coolant channels with internal geometries that include smooth walls, spiral fins and both twisted tape and spiral fins. Freon-71 was the working fluid. The flow regimes studied were single-phase, subcooled flow boiling, and stratified flow boiling. The inside diameter of all test sections was near 10.0 mm. Circumferentially averaged heat transfer coefficients at several axial locations were obtained for selected coolant channels for a volumetric flow rate of 4.738 x 10−5m3/s, 0.19 MPa (absolute) exit pressure, and 22.2°C inlet subcooling. Overall (averaged over the entire channel) heat transfer coefficients were compared for the various channel geometries. This comparison showed that the channel with large-pitch spiral fins had higher heat transfer coefficients at all power levels. However, the results appear to indicate that if the twist ratio (ratio of the twisted tape period to the inside diameter) is decreased, the configuration employing both fins and a twisted tape will have had greater enhancements.  相似文献   

16.
This paper presents the results of an experimental study of the natural convection heat transfer characteristics of sinusoidal wavy surfaces on vertical plates maintained at a constant temperature. Local heat transfer coefficients were obtained with a Mach-Zehnder interferometer. The heat transfer from the wavy surfaces, compared to a plane plate of equal projected area, increased with increasing amplitude-to-wavelength ratio. The heat transfer was increased by about 15 percent at an amplitude-to-wavelength ratio of 0.3; for this case a flow instability was detected. A quantitative comparison with a previously published numerical investigation is also presented. In general, there is agreement between the two studies.  相似文献   

17.
This paper presents a general differential mathematical model to analyze the simultaneous heat and mass transfer processes that occur in different components of an ammonia–water absorption system: absorber, desorber, rectifier, distillation column, condenser and evaporator. Heat and mass transfer equations are considered, taking into account the heat and mass transfer resistances in the liquid and vapour phases. The model considers the different regions: vapour phase, liquid phase and an external heating or cooling medium. A finite difference numerical method has been considered to solve the resulting set of nonlinear differential equations and an iterative algorithm is proposed for its solution. A map of possible solutions of the mass transferred composition z is presented when varying the interface temperature, which enables to establish a robust implementation code. The analysis is focused on the processes presented in ammonia–water absorption systems. The model is applied to analyze the ammonia purification process in an adiabatic packed rectification column and the numerical results show good agreement with experimental data.  相似文献   

18.
The Investigation of the two-phase flow patterns and their transitions during the condensation has gained increasing interest and importance from the well-known phenomenon that the heat transfer characteristics are strongly dependent on the flow patterns. Therefore, it is very important to study on which heat transfer enhancement approach is suitable for an individual flow pattern inside a condenser, so that an accurate heat transfer mechanism can be understood that is consistent with the flow patterns. The condensation heat transfer for R134a in the two kinds of in-tube three-dimensional (3-D) micro-fin tubes with different geometries is experimentally investigated. Based on the flow pattern observations, the flow patterns in the Soliman flow regime map are divided into two-flow regimes; one with the vapor-shear-dominant annular regime and the other with the gravitational-force-dominant stratified-wavy regime. The flow regime transition criterion between the annular regime and the stratified-wavy regime is at Fr equal to 2. In the annular regime, the heat transfer coefficients h of the two kinds of in-tube 3-D micro-fin tubes decreases as the vapor quality x decreases. The regressed condensation heat transfer correlation from the experimental data of the annular flow region is obtained. The dispersibility of the experimental data is inside the limits of ±25%. In the stratified-wavy regime, the average heat transfer coefficient h of the two kinds of in-tube 3-D micro-fin tubes increases as the mass flux increases and the number of micro fins in the 3-D micro-fin tube is not the controlling factor for the performance of a condensation heat transfer. The regressed condensation heat transfer correlation of the stratified-wavy flow regime is experimentally obtained. The dispersibility of the experimental data is inside the limits of ±22%. Combined with the criteria of flow pattern transitions, the correlations can be used for the design of a condenser with 3-D micro-fin tubes.  相似文献   

19.
An experimental methodology is proposed in which localized convective boiling heat transfer coefficients inside the tubes of compact evaporators are determined by testing of full evaporator cores. The proposed technique makes use of a special test system having two main flow circuits. One of these flow loops is a conventional vapor compression system, which provides a steady, low-quality, two-phase flow of refrigerant to the tube side of the evaporator. The second primary flow loop provides a steady flow of the vapor of a second working fluid, which condenses on the finned side of the evaporator. Measured data from this system are analyzed using an iterative scheme. Trends in the variation of the refrigerant-side heat transfer coefficient determined by this method throughout a typical evaporator core are described, and the differences and similarities relative to previously published results for single round tubes are discussed.  相似文献   

20.
Using Darcy's equation for two-phase flows in porous media and Laplace's capillary equation, a one-dimensional model of a micro heat pipe is developed to investigate its thermal and fluid-mechanical behaviors within its capillary limitation. The effects of various parameters are incorporated into the analysis. These parameters are: the capillary number, the charge level of the working fluid, the vapor-liquid viscosity ratio, contact angle, the relative lengths of the evaporator and condenser sections, the orientation of the micro heat pipe, and the Bond number. Furthermore, comparisons with existing experimental results show that the porous-medium model is reasonably adequate for the prediction of the capillary performance limit of a micro heat pipe. Received on 26 October 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号