首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Optical properties (photoluminescence and absorption) of Eu(bta)3(B) n (B = H2O or 1,10-phenanthroline) polycrystalline powders and fluoroacrylate polymers (FAPs) impregnated with these compounds using supercritical CO2 (SC CO2) were investigated. It was established that impregnation of Eu(bta)3phen into the FAPs using an SC CO2 solution was difficult to achieve. The type of B (ancillary ligand) and the polymer matrix were shown to influence the temperature quenching of photoluminescence of Eu3+ ions in the range 25–100°C. A comparative analysis of quantum yields (λex = 300 and 380 nm) and photoluminescence decay times (λex = 337.1 nm) for Eu(bta)3B n and for Eu(bta)3B n -doped FAPs was performed.  相似文献   

2.
The effect of temperature on the spectral luminescence characteristics of PbWO4:Tb3+ crystals with synchrotron and laser excitation is studied. If PbWO4:Tb3+ is excited by synchrotron radiation with λ = 88 nm at 300 K, a faint recombination luminescence of the impurity terbium is observed against the matrix luminescence. When the temperature is reduced to 8 K, the luminescence intensity of PbWO4:Tb3+ increases by roughly an order of magnitude and the characteristic luminescence of the unactivated crystal is observed. Excitation of PbWO4:Tb3+ by a nitrogen laser at 300 K leads to the appearance of emission from Tb3+ ions. At 90 K, a faint matrix luminescence is observed in addition to the activator emission. The formation of the luminescence excitation spectra for wavelengths of 60–320 nm is analyzed and the nature of the emission bands is discussed.  相似文献   

3.
We have studied photoluminescence and thermoluminescence (PL and TL) in CaGa2Se4:Eu crystals in the temperature range 77–400 K. We have established that broadband photoluminescence with maximum at 571 nm is due to intracenter transitions 4f6 5d–4f7 (8S7/2) of the Eu2+ ions. From the temperature dependence of the intensity (log I–103/T), we determined the activation energy (E a = 0.04 eV) for thermal quenching of photoluminescence. From the thermoluminescence spectra, we determined the trap depths: 0.31, 0.44, 0.53, 0.59 eV. The lifetime of the excited state 4f6 5d of the Eu2+ ions in the CaGa2Se4 crystal found from the luminescence decay kinetics is 3.8 μsec. Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 76, No. 1, pp. 112–116, January–February, 2009.  相似文献   

4.
Dots and lines consisting of nonlinear optical GdxBi1-xBO3 crystals were patterned on the surface of CuO-doped Gd2O3-Bi2O3-B2O3 glass by heat-assisted (200 °C) Nd:YAG laser irradiations with a wavelength of λ=1064 nm, where the laser energy absorbed by Cu2+ is converted to the local heating of the surrounding Cu2+. The surface morphology and orientation of crystals in the patterned lines were clarified from confocal scanning laser microscope observations and polarized micro-Raman scattering spectra. Crystal lines with periodic bumps (i.e., ladder-shape like lines) were patterned by laser irradiations with a power of 0.79 W and a scanning speed of 60 μm/s, and the orientation of GdxBi1-xBO3 crystals in the lines was proposed. The present study demonstrates that the combination of Cu2+ and continuous wave Nd:YAG laser with λ=1064 nm is effective in inducting crystallization of oxide glasses. The mechanism of laser-induced crystallization in glass has also been discussed. PACS 61.43.Fs; 42.70.Mp; 68.35.Bs; 78.30.-j; 79.20.Ds  相似文献   

5.
By controlling the oxygen pressure, single-phase CuO and Cu2O thin films have been obtained on quartz substrates using a pulsed laser deposition technique. The structure properties and linear optical absorption of the films were characterized by X-ray diffraction and UV–VIS spectroscopy. By performing z-scan measurements using a femtosecond laser (800 nm, 50 fs), the real and imaginary parts of the third-order nonlinear susceptibility, Re χ (3) and Im χ (3), of the films were determined. Both CuO and Cu2O films exhibited large optical nonlinearities, which is comparable to those in some representative semiconductor films such as ZnO and GaN films using femtosecond laser excitation. Compared with Cu2O films, the CuO films showed larger third-order nonlinear optical effects under off-resonance excitation. Furthermore, the mechanisms of the optical nonlinearities in CuO and Cu2O films are explained in the main text. It was suggested that the reasons of the difference in their nonlinear refractive effects may be related to the different electronic structure in CuO and Cu2O materials.  相似文献   

6.
The electromagnetically induced transparency (EIT) on the atomic D 1 line of rubidium is studied using a nanometric-thin cell with atomic vapor column length in the range of L=400–800 nm. It is shown that the reduction of the cell thickness by four orders as compared with an ordinary cm-size cell still allows to form an EIT resonance for L=λ=794 nm with the contrast of up to 40%. Further reduction of thickness to L=λ/2 leads to significant reduction of EIT contrast, verifying that the key parameter for EIT in wavelength-scale-thickness cells is not the value of L itself but L/λ ratio. Remarkable distinctions of EIT formation in nanometric-thin and ordinary cells are demonstrated. Well-resolved splitting of the EIT resonance in a magnetic field for L=λ can be used for magnetometry with nanometric spatial resolution. The presented theoretical model well describes the observed results.  相似文献   

7.
SrMoO4 doped with rare earth are still scarce nowadays and have attracted great attention due to their applications as scintillating materials in electro-optical like solid-state lasers and optical fibers, for instance. In this work Sr1−xEuxMoO4 powders, where x = 0.01; 0.03 and 0.05, were synthesized by Complex Polymerization (CP) Method. The structural and optical properties of the SrMoO4:Eu3+ were analyzed by powder X-ray diffraction patterns, Fourier Transform Infra-Red (FTIR), Raman Spectroscopy, and through Photoluminescent Measurements (PL). Only a crystalline scheelite-type phase was obtained when the powders were heat-treated at 800 °C for 2 h, 2θ = 27.8° (100% peak). The excitation spectra of the SrMoO4:Eu3+Em. = 614 nm) presented the characteristic band of the Eu3 + 5L6 transition at 394 nm and a broad band at around 288 nm ascribed to the charge-transfer from the O (2p) state to the Mo (4d) one in the SrMoO4 matrix. The emission spectra of the SrMoO4:Eu3+ powders (λExc. = 394 and 288 nm) show the group of sharp emission bands among 523–554 nm and 578–699 nm, assigned to the 5D17F0,1and 2 and 5D07F0,1,2,3 and 4, respectively. The band related to the 5D07F0 transition indicates the presence of Eu3+ site without inversion center. This hypothesis is strengthened by the fact that the band referent to the 5D07F2 transition is the most intense in the emission spectra.  相似文献   

8.
It has been experimentally demonstrated that the use of the effect of significant narrowing of the fluorescence spectrum from a nanocell that contains a column of atomic Rb vapor with a thickness of L = 0.5λ (where λ = 794 nm is the wavelength of laser radiation, whose frequency is resonant with the atomic transition of the D 1 line of Rb) and the application of narrowband diode lasers allow the spectral separation and investigation of changes in probabilities of optical atomic transitions between levels of the hyperfine structure of the D 1 line of 87Rb and 85Rb atoms in external magnetic fields of 10–2500 Gs (for example, for one of transitions, the probability increases ∼17 times). Small column thicknesses (∼390 nm) allow the application of permanent magnets, which facilitates significantly the creation of strong magnetic fields. Experimental results are in a good agreement with the theoretical values. The advantages of this method over other existing methods are noted. The results obtained show that a magnetometer with a local spatial resolution of ∼390 nm can be created based on a nanocell with the column thickness L = 0.5λ. This result is important for mapping strongly inhomogeneous magnetic fields.  相似文献   

9.
An optical clock based on an Er3+ fiber femtosecond laser and a two-mode He–Ne/CH4 optical frequency standard (λ=3.39 μm) is realized. Difference-frequency generation is used to down convert the 1.5-μm frequency comb of the Er3+ femtosecond laser to the 3.4-μm range. The generated infrared comb overlaps with the He–Ne/CH4 laser wavelength and does not depend on the carrier–envelope offset frequency of the 1.5-μm comb. In this way a direct phase-coherent connection between the optical frequency of the He–Ne/CH4 standard and the radio frequency pulse repetition rate of the fiber laser is established. The stability of the optical clock is measured against a commercial hydrogen maser. The measured relative instability is 1×10−12 at 1 s and for averaging times less than 50 s it is determined by the microwave standard, while for longer times a drift of the He–Ne/CH4 optical standard is dominant.  相似文献   

10.
The absorption spectra, fluorescence spectrum and fluorescence decay curve of Nd3+ ions in CaNb2O6 crystal were measured at room temperature. The peak absorption cross section was calculated to be 6.202×10−20 cm2 with a broad FWHM of 7 nm at 808 nm for E//a light polarization. The spectroscopic parameters of Nd3+ ions in CaNb2O6 crystal have been investigated based on Judd-Ofelt theory. The parameters of the line strengths Ω t are Ω 2=5.321×10−20 cm2,Ω 4=1.734×10−20 cm2,Ω 6=2.889×10−20 cm2. The radiative lifetime, the fluorescence lifetime and the quantum efficiency are 167 μs, 152 μs and 91%, respectively. The fluorescence branch ratios are calculated to be β 1=36.03%,β 2=52.29%,β 3=11.15%,β 4=0.533%. The emission cross section at 1062 nm is 9.87×10−20 cm2.  相似文献   

11.
For the first time electric field induced second harmonic (EFISH) generation of femtosecond (fs) laser pulses (λ=800 nm, τ=75±5 fs, rep. rate=80 MHz, E pulse≤10 nJ) is observed in transmission through a thin free-standing silicon (Si) membrane of 10-μm thickness and compared to the well-known EFISH results in reflection by use of the z-scan technique. EFISH in reflection and transmission unequivocally originate from the front and rear Si/SiO2 interfaces, respectively, with SiO2 being the natural oxide on the Si surfaces. Frequency conversion is enhanced by photoinduced electric fields across the Si/SiO2 interfaces caused by charge-carrier injection from Si into the oxide. The z-scan results and time-dependent measurements allow comparison of the EFISH signal amplitudes and time constants detected in transmission and reflection, demonstrating the need for further investigation.  相似文献   

12.
Femtosecond laser patterning of alkanethiol monolayers on gold-coated silicon substrates at λ=800 nm, τ<30 fs and ambient conditions has been investigated. Single-pulse processing allows one to selectively remove the organic coating. Subsequently, pattern transfer into the gold film via wet etching in ferri-/ferrocyanide solution is achieved. As demonstrated, burr-free patterning can be carried out over an extremely wide range of laser pulse fluences from above 2 J/cm2 down to 0.5 J/cm2. Moreover, at low fluences, sub-wavelength processing down to λ/5 is feasible. In particular, at a 1/e laser spot diameter of about 1 μm, holes with diameters of 160 nm and step edges below 80 nm are fabricated. These results emphasize the prospects of organic monolayers as high-resolution resists in rapid nonlinear femtosecond laser processing.  相似文献   

13.
In the production of biosensors or artificial tissues a basic step is the immobilization of living cells along the required pattern. In this paper the ability of some promising laser-based methods to influence the interaction between cells and various surfaces is presented. In the first set of experiments laser-induced patterned photochemical modification of polymer foils was used to achieve guided adherence and growth of cells to the modified areas: (a) Polytetrafluoroethylene was irradiated with ArF excimer laser (λ=193 nm, FWHM=20 ns, F=9 mJ/cm2) in presence of triethylene–tetramine liquid photoreagent; (b) a thin carbon layer was produced by KrF excimer laser (λ=248 nm, FWHM=30 ns, F=35 mJ/cm2) irradiation on polyimide surface to influence the cell adherence. It was found that the incorporation of amine groups in the PTFE polymer chain instead of the fluorine atoms can both promote and prevent the adherence of living cells (depending on the applied cell types) on the treated surfaces, while the laser generated carbon layer on polyimide surface did not effectively improve adherence. Our attempts to influence the cell adherence by morphological modifications created by ArF laser irradiation onto polyethylene–terephtalate surface showed a surface–roughness dependence. This method was effective only when the Ra roughness parameter of the developed structure did not exceed the 0.1 micrometer value. Pulsed laser deposition with femtosecond KrF excimer lasers (F=2.2 J/cm2) was effectively used to deposit structured thin films from biomaterials (endothelial cell growth supplement and collagen embedded in starch matrix) to promote the adherence and growth of cells. These results present evidence that some surface can be successfully altered to induce guided cell growth.  相似文献   

14.
Previous studies in our laboratory have reported that the chemical etch rate of a commercial photosensitive glass ceramic (FoturanTM, Schott Corp., Germany) in dilute hydrofluoric acid is strongly dependent on the incident laser irradiance during patterning at λ=266 nm and λ=355 nm. To help elucidate the underlying chemical and physical processes associated with the laser-induced variations in the chemical etch rate, several complimentary techniques were employed at various stages of the UV laser exposure and thermal treatment. X-ray diffraction (XRD) was used to identify the crystalline phases that are formed in Foturan following laser irradiation and annealing, and monitor the crystalline content as a function of laser irradiance at λ=266 nm and λ=355 nm. The XRD results indicate the nucleation of lithium metasilicate (Li2SiO3) crystals as the exclusive phase following laser irradiation and thermal treatment at temperatures not exceeding 605 °C. The XRD studies also show that the Li2SiO3 density increases with increasing laser irradiance and saturates at high laser irradiance. For our thermal treatment protocol, the average Li2SiO3 crystal diameters are 117.0±10.0 nm and 91.2±5.8 nm for λ=266 nm and λ=355 nm, respectively. Transmission electron microscopy (TEM) was utilized to examine the microscopic structural features of the lithium metasilicate crystals. The TEM results reveal that the growth of lithium metasilicate crystals proceeds dendritically, and produces Li2SiO3 crystals that are ∼700–1000 nm in length for saturation exposures. Optical transmission spectroscopy (OTS) was used to study the growth of metallic silver clusters that act as nucleation sites for the Li2SiO3 crystalline phase. The OTS results show that the (Ag0)x cluster concentration has a dependence on incident laser irradiance that is similar to the etch rate ratios and Li2SiO3 concentration. A comparison between the XRD and optical transmission results and our prior etch rate results show that the etch rate contrast and absolute etch rates are dictated by the Li2SiO3 concentration, which is in turn governed by the (Ag0)x cluster concentration. These results characterize the relationship between the laser exposure and chemical etch rate for Foturan, and permit a more detailed understanding of the photophysical processes that occur in the general class of photostructurable glass ceramic materials. Consequently, these results may also influence the laser processing of other photoactive materials. PACS  42.62.-b; 61.43.Fs; 81.05.Kf; 81.10.-h; 83.80.Ab  相似文献   

15.
We report an experimental investigation of the non-steady-state photoelectromotive force in nanostructured GaN within porous glass and polypyrrole within chrysotile asbestos. The samples are illuminated by an oscillating interference pattern created by two coherent light beams and the alternating current is detected as a response of the material. Dependences of the signal amplitude versus temporal and spatial frequencies, light intensity, and temperature are studied for two wavelengths λ=442 and 532 nm. The conductivity of the GaN composite is measured: σ=(1.1–1.6)×10−10 Ω−1 cm−1 (λ=442 nm, I 0=0.045–0.19 W/cm2, T=293 K) and σ=(3.5–4.6)×10−10 Ω−1 cm−1 (λ=532 nm, I 0=2.3 W/cm2, T=249–388 K). The diffusion length of photocarriers in polypyrrole nanowires is also estimated: L D=0.18 μm.  相似文献   

16.
Diluted magnetic semiconductor (DMS) nanoparticles of Sn1−x Er x O2 (x = 0.0, 0.02, 0.04, and 0.1) were prepared by sol–gel method. The X-ray diffraction patterns showed SnO2 rutile structure for all samples with no impurity peaks. The decrease in crystallite size with Er concentration was confirmed from TEM measurements (from 12 to 4 nm). The UV–Visible absorption spectra of Er-doped SnO2 nanoparticles showed blue shift in band gap compared to undoped SnO2. The electron spin resonance analysis of Er-doped SnO2 nanoparticles indicate Er3+ in a rutile lattice and also decrease in intensity with Er concentration above x = 0.02. Temperature-dependent magnetization studies and the inverse susceptibility curves indicated increased antiferromagnetic interaction with Er concentration.  相似文献   

17.
The results of the spectroscopic analysis of transition strengths for Er3+ ions in a series of Hf:Er:LiNbO3 crystals with variable Hf content and fixed Er content are reported. Unpolarized UV-VIS-NIR absorption spectra, upconversion fluorescence spectra excited at 800 nm, and microsecond time-resolved spectra excited at 400 nm and 800 nm by 800 nm femtosecond laser were measured at room temperature. The HfO2 incorporation has influence on Er3+ radiative lifetimes, and fluorescence branching ratios. For Hf(4 mol %):Er(1 mol %):LiNbO3, Ω2=2.63×10-20 cm2, Ω4=2.86×10-20 cm2, and Ω6=0.72×10-20 cm2. Ω24 is contrary to the Er3+ general trend of Ω246 when the Hf content is below its threshold concentration. In addition, the sum of Ω increases with the Hf content when the HfO2 content below 6 mol % is unfamiliar. The upconversion mechanism is discussed in this work. PACS 71.20.Eh; 77.84.Dy; 42.62.Fi; 42.65.Ky  相似文献   

18.
The three thermo-optic coefficients of the biaxial laser host KLu(WO4)2 are measured at 633 nm by a deflection method. Their values at 300 K amount to n g / T=−7.4×10−6 K−1; n m / T=−1.6×10−6 K−1 and n p / T=−10.8×10−6 K−1. Nearly athermal propagation directions are found for polarizations along the N m and N p dielectric axes.  相似文献   

19.
Layered-perovskite ferroelectric Bi2.85La0.15TiNbO9 (LBTN) optical waveguiding thin films were grown on fused silica substrates by pulsed laser deposition (PLD). X-ray diffraction (XRD) revealed that the film is highly (00l) textured. We observed sharp and distinct transverse electric (TE) and transverse magnetic (TM) multimodes and measured the refractive indices of LBTN thin films at 632.8 nm. The ordinary and extraordinary refractive indices were calculated to be n TE=2.358 and n TM=2.464, respectively. The film homogeneity and the film-substrate interface were analyzed using an improved version of the inverse Wentzel–Kramer–Brillouin (iWKB) method. The refractive index of the film remains constant at n 0 within the waveguiding layer. The average transmittance of the film is 70% in the wavelength range of 400–1400 nm and the optical waveguiding properties were evaluated by the optical prism coupling method. Our results showed that the LBTN films are very good electro-optical active material.  相似文献   

20.
The synthesis and functionalization of carbon nanoparticles with PEG200 and mercaptosuccinic acid, rendering fluorescent carbon dots, is described. Fluorescent carbon dots (maximum excitation and emission at 320 and 430 nm, respectively) with average dimension 267 nm were obtained. The lifetime decay of the functionalized carbon dots is complex and a three component decay time model originated a good fit with the following lifetimes: τ 1 = 2.71 ns; τ 2 = 7.36 ns; τ 3 = 0.38 ns. The fluorescence intensity of the carbon dots is affected by the solvent, pH (apparent pK a of 7.4 ± 0.2) and iodide (Stern-Volmer constant of 78 ± 2 M−1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号