首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
By exploiting the polarization multistability of polaritons, we show that polarized signals can be conducted in the plane of a semiconductor microcavity along controlled channels or "neurons." Furthermore, because of the interaction of polaritons with opposite spins it is possible to realize binary logic gates operating on the polarization degree of freedom. Multiple gates can be integrated together to form an optical circuit contained in a single semiconductor microcavity.  相似文献   

2.
We observe a room-temperature low-threshold transition to a coherent polariton state in bulk GaN microcavities in the strong-coupling regime. Nonresonant pulsed optical pumping produces rapid thermalization and yields a clear emission threshold of 1 mW, corresponding to an absorbed energy density of 29 microJ cm-2, 1 order of magnitude smaller than the best optically pumped (In,Ga)N quantum-well surface-emitting lasers (VCSELs). Angular and spectrally resolved luminescence show that the polariton emission is beamed in the normal direction with an angular width of +/-5 degrees and spatial size around 5 microm.  相似文献   

3.
We report the external control of the intersubband polariton coupling by manipulating the carrier density in quantum wells resonantly coupled to a GaAs/AlGaAs microcavity. The electrons in the wells were tuned by means of a depletion gate bias or by utilizing charge transfer between the energetically aligned ground subbands of asymmetric tunnel-coupled quantum wells. We propose the use of tunnel-assisted control of the polariton ground state in an asymmetrically coupled quantum well for implementing ultrafast modulation of intersubband polaritons.  相似文献   

4.
We present novel experimental results demonstrating the coherence properties of the nonlinear emission from semiconductor microcavities in the strong coupling regime, recently interpreted by parametric polariton four-wave mixing. We use a geometry corresponding to degenerate four-wave mixing. In addition to the predicted threshold dependence of the emission on the pump power and spectral blueshift, we observe a phase dependence of the amplification which is a signature of a coherent polariton wave mixing process.  相似文献   

5.
We report on the fabrication and characterization of an efficient and CMOS compatible Si-based light source. Silicon-rich silicon oxide (SRSO)/SiO2 superlattices-doped planar optical microcavities have been grown by reactive magnetron sputtering. The devices were studied using reflectance and photoluminescence measurements. The reflectivity of the resonator is above 99.9% and the quality factor is reaching a value of 100. Modification of silicon nanocrystals emission is clearly observed in the visible and reveals narrow, intense and highly directional emission properties.  相似文献   

6.
We extend our recent results [O.A. Egorov et al. Phys. Rev. Lett. 102, 153904 (2009)] on half-light–half-matter polariton solitons in planar semiconductor microcavities operating in the strong coupling regime. We initiate discussion on the structure of the solitons in the momentum space and its link to the instability of the upper branch of the polariton bistability loop. Numerical results showing the soliton excitation by a seed pulse are presented.  相似文献   

7.
8.
Stanley  R. P.  Houdr&#;  R.  Oesterle  U.  Ilegems  M. 《Il Nuovo Cimento D》1995,17(11):1323-1332
Il Nuovo Cimento D - We present an extensive set of absorption and PL measurements on semiconductor microcavities in the strong-coupling regime. We observe strong coupling from 110 K to room...  相似文献   

9.
We consider the regime of strong light-matter coupling in an organic microcavity, where large Rabi splitting can be achieved. As has been shown, the excitation spectrum of such a structure, besides coherent polaritonic states, contains a number of strongly spatially localized incoherent excited states. These states form the majority of the excited states of the microcavity and are supposed to play the decisive role in the relaxation dynamics of the excitations in the microcavity. We consider the non-radiative transition from an incoherent excited state into one of the coherent states of the lower polaritonic branch accompanied by emission of a high-energy intramolecular phonon. It is shown that this process may determine the lifetime of incoherent excited states in the microcavity. This observation may be important in the discussion of pump–probe experiments with short pulses. This process may also play an important role for the population of the lowest energy states in organic microcavities, and hence in the problem of condensation of cavity polaritons.  相似文献   

10.
The dynamics of optical switching in semiconductor microcavities in the strong coupling regime is studied by using time- and spatially resolved spectroscopy. The switching is triggered by polarized short pulses which create spin bullets of high polariton density. The spin packets travel with speeds of the order of 10(6) m/s due to the ballistic propagation and drift of exciton polaritons from high to low density areas. The speed is controlled by the angle of incidence of the excitation beams, which changes the polariton group velocity.  相似文献   

11.
Strong temporal hysteresis effects in the population kinetics of pumped and scattered lower polaritons (LPs) have been observed in a planar semiconductor microcavity under a nanosecond-long pulsed resonant excitation (by frequency and angle) near the inflection point of the LPs' dispersion. The hysteresis loops have a complicated shape due to the interplay of two instabilities. The self-instability (bistability) of the nonlinear pumped LP is accompanied by a strong parametric instability which causes an explosive growth of the scattered LPs' population over a wide range of wave vectors. Finally, after a 30-500 ps period, a three-mode scattering pattern forms, thereby demonstrating a dynamically self-organized regime of the optical parametric oscillator. Stability is maintained by the presence of numerous weak "above-condensate" modes; the whole system therefore appears to be highly correlated.  相似文献   

12.
The optical response of Mott–Wannier excitons is investigated in semiconductor superlattices and microcavities. p-Polarized light is considered to calculate the reflectivity Rpand dispersion relation of the collective normal modes in superlattices accounting for extrinsic Morse potential wells, andRp in microcavities. Results of Rpexhibit well-defined peaks of the exciton bound states in the Morse potentials for both transverse and longitudinal modes. Comparisons ofRp with experimental reflectivity data of light for semiconductor microcavities exhibit good qualitative agreement as well as Rabi splitting.  相似文献   

13.
GaN-based airpost pillar microcavities are realized by focused-ion beam etching starting from an all-epitaxially grown vertical-cavity surface-emitting laser structure. Pillar diameters below 1 μm are well controllable. The sidewalls are smooth and show a damaged surface layer of a thickness less than 2 nm only. Micro-photoluminescence measurements reveal the longitudinal and transversal mode spectra of the cavities in good agreement with theoretical calculations based on a vectorial transfer-matrix method.  相似文献   

14.
The kinetics of a field on a quantum well in the active region of a planar microcavity with strong exciton-photon coupling has been investigated under the conditions of resonance pulse excitation by a small degree of circular polarization. It has been shown that the system of polaritons at the early stage of the development of instability induced by polariton-polariton interaction tends to transit to a circularly polarized state, but does not reach 100% circular polarization and returns to a polarized state whose polarization is close to the pump polarization. It has been shown that the observed effects are caused by the excitation of an unpolarized reservoir of excitons in quantum wells, which leads to fast relaxation of the difference between the effective resonance frequencies of excitons with different circular polarizations.  相似文献   

15.
The optical response of the intersubband excitation of multiple InAs/AlSb quantum wells embedded in a planar semiconductor microcavity has been studied through angle-dependent reflectance measurements. Using a resonator based on total internal reflection, a strong coupling is demonstrated between the intersubband optical transition and the cavity photon, with the attendant formation of intersubband polaritons. A giant vacuum-Rabi splitting 2ΩR was observed both at liquid helium temperatures () as well as at 300 K (), for a transition energy . The observed ratio is a record high value (14%) for any strongly-coupled systems, and demonstrates the huge potential of this material for the achievement of the ultra-strong coupling regime predicted theoretically.  相似文献   

16.
In a pump-probe experiment, we have been able to control, with phase-locked probe pulses, the ultrafast nonlinear optical emission of a semiconductor microcavity, arising from polariton parametric amplification. This evidences the coherence of the polariton population near k=0, even for delays much longer than the pulse width. The control of a large population at k=0 is possible although the probe pulses are much weaker than the large polarization they control. With rising pump power the dynamics of the scattering get faster. Just above threshold the parametric scattering process shows unexpected long coherence times, whereas when pump power is risen the contrast decays due to a significant pump reservoir depletion. The weak pulses at normal incidence control the whole angular emission pattern of the microcavity.  相似文献   

17.
The complexity induced by the Coulomb interaction between electrons determines the noninstantaneous character of exciton-exciton collisions. We show that the exciton-photon coupling in semiconductor microcavities is able to alter the exciton dynamics during collisions strongly affecting the effective scattering rates. Our analysis clarifies the origin of the great enhancement of parametric gain observed when increasing the polariton splitting. It also demonstrates that exciton-exciton collisions in semiconductors can be controlled and engineered to produce almost decoherence-free collisions for the realization of all-optical microscopic devices.  相似文献   

18.
Far-field radiation for quantum boxes located in pillar microcavities was investigated spatially and spectrally at room temperature. We have found that small-diameter pillars show directional emission for the fundamental cavity mode together with a spectral behavior dominated by the pillar's discrete modal structure. These results may be important in the context of single-photon emitters for quantum communications.  相似文献   

19.
We demonstrate, theoretically and experimentally, a polarization-controlled optical gate based on a degenerate polariton-polariton scattering process occurring in semiconductor microcavities. Because of the interference between coherent polaritons, this process is observed in the case of polaritons generated from two collinearly polarized coherent pump beams. On the contrary, if the beams are cross polarized, the scattering is suppressed.  相似文献   

20.
A remarkable feature of exciton-polaritons is the strongly spin-dependent polariton-polariton interaction, which has been predicted to result in the formation of spin rings in real space [Shelykh, Phys. Rev. Lett. 100, 116401 (2008)]. Here we experimentally demonstrate the spin bistability of exciton polaritons in an InGaAs-based semiconductor microcavity under resonant optical pumping. We observe the formation of spin rings whose size can be finely controlled in a spatial scale down to the micrometer range, much smaller than the spot size. Demonstration of optically controlled spin patterns in semiconductors opens way to the realization of spin logic devices and spin memories.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号