首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
R. Himeno 《显形杂志》2001,4(2):197-207
Flows around a ball used in baseball games are calculated using third-order upwinddifference method with various seam positions determined by two rotation angles. Those are four-seam rotation with an angle: a and two-seam rotation with an angle: b. The computed results of the four-seam rotation are compared with experimental data measured in a wind tunnel and computed drag coefficients qualitatively agree well with experiments. However, lift coefficients do not agree well. The computed results and geometrical symmetry suggest that a supporting rod in the wind tunnel would have strong influence on the accuracy of the measurement. Flow changes in two-seam rotation are also simulated. It is found that the lowest drag force is observed atb=90 and that the value is less than half of the largest drag force ata=30 and 60 degrees. The largest lift force is observed atb=20 degree. In this case, a projection of the seam line on the top causes a large separation while smooth surface without the seam at the bottom dose not separate the flow. A pair of longitudinal vortices are found in the wake, which make wake slant and generate large lift force.  相似文献   

2.

Abstract  

It is known that for a square cylinder subjected to uniform flow, the drag force changes with the angle of attack. To clarify the flow characteristics around a square cylinder with corner cutoffs, we measured the drag coefficient and the Strouhal number for changing chamfer dimensions. We analyzed the flow around a square cylinder with corner cutoffs by applying the RNG kε turbulent model, and investigated the surface flow pattern using visualization by means of the oil film and mist flow method. From these results, we obtained the surface flow patterns by the oil film method and numerical analysis. The numerical results agreed well with the experimental values. The drag coefficient of the square cylinder with corner cutoffs decreased suddenly at an angle of attack of about α = 0°– 10° when compared with the drag coefficient for a square cylinder. The minimum value of the drag coefficient for the square cylinder with corner cutoffs decreased by about 30% compared with that for the square cylinder. The drag coefficient of the square cylinder with 10% corner cutoffs was found to be smallest, since the wake area of this square cylinder was smaller compared with that of the other square cylinder.  相似文献   

3.

Abstract  

The cavity has been widely employed as the flame holder to prolong the residence time of fuel in supersonic flows since it improves the combustion efficiency in the scramjet combustor, and also imposes additional drag on the engine. In this paper, the two-dimensional coupled implicit Reynolds Average Navier–Stokes equations, the RNG kε turbulence model and the finite-rate/eddy-dissipation reaction model have been employed to numerically simulate the combustion flow field of an integrated hypersonic vehicle. The effect of cavity location on the combustion flow field of the vehicle has been investigated, and the fuel, namely hydrogen, was injected upstream of the cavity on the walls of the first stage combustor. The obtained results show that the viscous lift force, drag force and pitching moment of the vehicle are nearly unchanged by varying the cavity location over the location range and designs considered in this article, namely the configurations with single cavity, double cavities in tandem and double cavities in parallel. The variation of the fuel injection strategy affects the separation of the boundary layer, and the viscous effect on the drag force of the vehicle is remarkable, but the viscous effects on the lift force and the pitching moment are both small and they can be neglected in the design process of hypersonic vehicles. In addition to varying the location of the cavities, three fuel injection configurations were considered. It was found that one particular case can restrict the inlet unstart for the scramjet engine.  相似文献   

4.
S. Takayama  K. Aoki 《显形杂志》2005,8(4):295-303
The present paper describes the flow characteristics around a rotating grooved circular cylinder with grooves of different depths. The surface structure of a circular cylinder was varied by changing the depths of 32 arc grooves on the surface. The surface pressure on the cylinder is measured for theRe range of from 0.4×105 to 1.8×105 and for rotations of from 0 to 4500 rpm. The drag coefficient of a grooved cylinder increases as the spin rate ratio α (= rotational speed of the cylinder surface/uniform velocity) increases forRe>1.0×105. As the groove depth increases, the drag coefficient of a grooved cylinder is independent from the spin rate ratio α. The direction of the lift force of a smooth cylinder is opposite to the Magnus force forRe>1.0×105. However, the direction of the lift force of a grooved cylinder is the same as that of the Magnus force for allRe>1.0×105. As the groove depth increases, the increase in the slope of the lift coefficient becomes small. These phenomena are related to the positions of the flow separation points, which are clarified from the pressure distribution and flow visualization by the spark tracing method. In addition, in the present study, the flow around a rotating grooved cylinder is clarified by flow visualization.  相似文献   

5.

Abstract  

This paper describes the effect of the seams of a rugby ball on the side force and the flight trajectory of the punted kick. Measurement of the aerodynamic force on a non-spinning rugby ball reveals that the side force coefficient depends on the position of the seam as well as the angle of attack. It was found from pressure-sensitive paint measurements that the seam of the ball is the trigger for initiating low pressure when the seam is situated around 60° from the stagnation point. The flight trajectory of the fluctuating ball can be obtained by numerically integrating the six degree-of-freedom non-linear equations of motion. It was shown that a slower spinning ball fluctuates from side to side during flight because of the asymmetrical pressure distribution on the sides of the ball.  相似文献   

6.
文章针对双三角翼大振幅正弦俯仰运动过程中的非定常载荷和流动特性开展了实验与数值模拟研究,并与相同主翼后掠角的单三角翼进行了对比.实验研究在低速回流式水槽中开展,所采用的实验模型为边条后掠角为75°,主翼后掠角为50°的双三角翼全模,俯仰运动的旋转轴位于主翼弦长的2/3处,振幅为0~60°,运动的缩减频率k=0.03,0.06,0.12,0.24,0.48.实验Reynolds数以主翼弦长为参考Re=1.69×104.在水槽的测力实验中,发现非定常流动力的迟滞现象,并且随着非定常运动缩减频率的增大,流动的迟滞效应也随之增大.与相同主翼后掠角的单三角翼相比,双三角翼的迟滞环在低缩减频率下更小,但随着缩减频率的增大,这种差距逐渐减小.在数值模拟研究中,采用DDES湍流模型对俯仰双三角翼的流场进行了数值模拟.流场结果表明,在较低的缩减频率下,主翼吸力面的前缘涡是影响气动力的主要因素,非定常流动力的迟滞效应主要与前缘涡在上仰过程中的延迟破裂和下俯过程中的延迟恢复有关;在较高的缩减频率下,机翼前缘涡对气动力的影响减小,由机翼俯仰角速度而产生的环量力成为了气动力的主导因素,因此在较高缩减频率下,单三角翼与双三角翼的升力特性趋于一致.   相似文献   

7.
In experiments on complex plasmas, afixed strata region in which the levitation of dust structures is observed is investigated using the method of probing by calibrated dust particles of different sizes in an applied magnetic field under elevated pressures. The measured azimuthal velocity of the probing particles corresponds to the action of the ion drag force for 4 μm-size particles and to the entrainment by the rotating gas owing to the electron vortex flow inside the strata for 1 μm-size particles. Extrapolation to pressures and magnetic fields in which the rotation inversion of dust structures is observed in experiments shows that the ion drag is the dominating force causing rotation with a negative projection of the angular velocity onto the magnetic induction.  相似文献   

8.
An experimental investigation was undertaken of the wake aerodynamics of a 1/12.81 model of a commercial passenger aircraft. The tests were undertaken in the 3.05 m by 3.66 m working section of a closed-return wind-tunnel. The program made use of laser sheet visualization (LSV) and particle image velocimetry (PIV) in planes, normal to the mean flow, to obtain images of flow-following, seed particles. The images were processed to obtain raw velocity vectors, flow divergence, vorticity, crossflow energy and high quality visualizations. Image sequences obtained under identical incident flow conditions were used to conceptualize the variability of principal wake features, such as regions of fluid of high vorticity.  相似文献   

9.
Tasci  Mehmet Oguz  Pektas  Mehmet Can  Tumse  Sergen  Karasu  Ilyas  Sahin  Besir  Akilli  Huseyin 《显形杂志》2021,24(3):437-442

The primary purpose of this investigation is to observe the effect of the pitching motion on the vortical flow structure and bursting of leading-edge vortices over a delta wing under the sideslip angle, β using a dye visualization technique. In the current work, a delta wing with a sweep angle of Λ = 70° was oscillated in upstroke and downstroke direction to be able to discover the influence of pitching motion on the flow characteristics of the delta wing. The values of mean angles of attack were selected as αm = 25° and αm = 35°, and the sideslip angle was altered from β = 0 to 16°. The delta wing oscillated with the various periods of Te = 5 s, 20 s, and 60 s, respectively. Amplitude of motion was adjusted as αo =  ± 5°. It is found that the pitching motion of the delta wing under the sideslip angle β varies the location of the vortex bursting and vortical flow structure substantially.

  相似文献   

10.
We report an experimental study of large scale correlations in the power injected in turbulent swirling flows generated in the gap between two coaxial rotating disks. We measure the pressure fluctuations on the blades of one disk, as well as the pressure drop between the leading and the trailing edges of the rotating blades, i.e. the local drag force. Measurements at different positions on one blade and on two successive blades display a correlation length much larger than the ones usually expected in turbulent flows. The time lag for which the correlation between two points is maximum, strongly depends on the global flow configuration. These results help us to understand the statistical properties of the injected power fluctuations in turbulent swirling flows. Received 2 September 1999  相似文献   

11.
The characteristics of the supersonic flow of the laser heating technique for producing micro-scale metallic particles were investigated in this study. A numerical model was established to predict the flow fields and particle trajectories leaving a spray nozzle with shock wave effects. The compressible flow of the shock waves and the trajectories of particles in diameters of 1–20 μm were simulated and compared with the flow visualization. In the experiment, a pulsed Nd-YAG laser was used as heat source on a carbon steel target within the nozzle, and the carbon steel particles were ejected by high-pressure air. The result shows that the shock wave structures were generated at various entrance pressures, and there is a significant increase in the amount of carbon steel particles and the spraying angles by increasing the entrance air pressure.  相似文献   

12.
Electrohydrodynamic atomization (EHDA), or simply Electrospraying is the process of influencing the breakup of a liquid into droplets by using a strong electric field. There can be different modes of Electrospraying depending, basically, on the created electric field strength and the liquid flowrate, for a specified liquid. Among these modes, the so-called cone-jet mode is the most explored one. This is due to its ability to produce highly charged monodisperse droplets in the nano- to micro-meter size range. Another mode of interest, which can also produce monodisperse droplets is the simple-jet mode. This mode is less explored when compared to the former. Within the papers that were explored by the authors, Agostinho et al. (2012) were the first authors to carefully investigate and characterize this mode. In their work, the authors reported about the influence of the electric field and the liquid flowrate on the droplets' size and spray dispersion. They also pointed out that the charge on these droplets can be expressed as a certain percentage of their Rayleigh limit.So far, there has been no model proposed to describe the droplets' trajectories in the simple-jet mode. This paper describes the design and the implementation of a physical model for determining the droplet trajectories in this mode. The model is done, specifically, for a single nozzle/ring-up configuration. It is a two-dimensional model, which solves the force balance equation for each droplet breaking up from the jet. It takes into consideration; the initial droplet velocity, the force of gravity, the electric field force, the inter-droplet coulombic force and the drag force. The droplets' deformation and reorientation were hypothesized, from observations, to play a major role in initiating the droplets' dispersion. They were simulated by implementing periodic displacements on the droplets' center of charge from its center of mass. The calculated droplets' trajectories' envelope angle was fitted to the experimental envelope angle by adjusting the droplet charge around the values that were reported by Agostinho et al. (2012). The model was validated by comparing the shapes of the theoretical and experimental sprays.The model offers new possibilities of modeling the droplets' trajectories in complex geometries, and of introducing additional forces to manipulate their trajectories in the simple-jet mode.  相似文献   

13.
When atomic force microscopy (AFM) is employed for in vivo study of immersed biological samples, the fluid medium presents additional complexities, not least of which is the hydrodynamic drag force due to viscous friction of the cantilever with the liquid. This force should be considered when interpreting experimental results and any calculated material properties. In this paper, a numerical model is presented to study the influence of the drag force on experimental data obtained from AFM measurements using computational fluid dynamics (CFD) simulation. The model provides quantification of the drag force in AFM measurements of soft specimens in fluids.The numerical predictions were compared with experimental data obtained using AFM with a V-shaped cantilever fitted with a pyramidal tip. Tip velocities ranging from 1.05 to 105 μm/s were employed in water, polyethylene glycol and glycerol with the platform approaching from a distance of 6000 nm. The model was also compared with an existing analytical model. Good agreement was observed between numerical results, experiments and analytical predictions. Accurate predictions were obtained without the need for extrapolation of experimental data. In addition, the model can be employed over the range of tip geometries and velocities typically utilized in AFM measurements.  相似文献   

14.
The transient advection of a cylindrical vortex tube in a viscous incompressible flow field and its interaction with a rotating/spinning spherical particle has been investigated numerically at Reynolds numbers in the range of 20≤ Re≤200 for angular velocities of 0≤Ω≤0.5. The effects of vortex parameters such as size, circulation strength and initial position relative to the particle, on the temporal behavior of the lift and drag forces are studied. Vortex‐sphere interactions bring about major changes in the flow field particularly when coupled with particle rotation. It is observed that the forces acting on the particle are significantly influenced during the time that the vortex core is in the vicinity of the particle. The extent of these local changes are about ±30% in the drag coefficient and about ±200% in the lift coefficient as compared to flow over a rotating solid sphere with no vortex interaction. It is also found that a vortex with core radius between one and two particle diameters creates the strongest temporal variations in the lift and drag coefficients. Furthermore, maximum lift variations occur for the vortex‐particle head on collision, while a vortex with an offset distance of about one diameter from the principal flow axis generates the maximum drag variations.  相似文献   

15.
Turbulent control and drag reduction in a channel flow via a bidirectional traveling wave induced by spanwise oscillating Lorentz force have been investigated in the paper. The results based on the direct numerical simulation (DNS) indicate that the bidirectional wavy Lorentz force with appropriate control parameters can result in a regular decline of near-wall streaks and vortex structures with respect to the flow direction, leading to the effective suppression of turbulence generation and significant reduction in skin-friction drag. In addition, experiments are carried out in a water tunnel via electro-magnetic (EM) actuators designed to produce the bidirectional traveling wave excitation as described in calculations. As a result, the actual substantial drag reduction is realized successfully in these experiments.  相似文献   

16.
《Journal of Electrostatics》2006,64(7-9):525-530
The design of a micro-force sensor suitable for the measurement of corona drag and other low velocity drag studies in a small laboratory wind tunnel facility is described. Example drag data are given for dc corona discharge generated by sharp parallel electrodes mounted on a microscope glass slide with discharge parallel to the air flow. The arrangement simulates two-dimensional flow over a flat plate useful for theoretical analysis. Measurements of free stream wind velocities in the range 0–210 cm/s with attendant drag down to 10−7 N can be detected in this facility depending on the calibration. The force sensor utilizes two strain gages mounted on a 0.127 mm stainless steel “feeler gage” in a cantilever arrangement. A bridge circuit provides sensitivities in the range 40–250 N/mV using a gravitational calibration technique. Anomalous effects from suspension wires and the interaction of electrostatic forces with the surroundings are discussed.  相似文献   

17.
A mean force exerted on a small rigid sphere by a sound wave in a viscous fluid is calculated. The force is expressed as a sum of drag force coming from the external steady flow existing in the absence of the sphere and contributions that are cross products of velocity and velocity derivatives of the incident field. Because of the drag force and an acoustic streaming generated near the sphere, the mean force does not coincide with the acoustic radiation pressure, i.e., the mean momentum flux carried by the sound field through any surface enclosing the sphere. If the sphere radius R is considerably smaller than the viscous wave penetration depth delta, the drag force can give the leading-order contribution (in powers of delta/R) to the mean force and the latter can then be directed against the radiation pressure. In another limit, delta< or =R, the drag force and acoustic streaming play a minor role, and the mean force reduces to the radiation pressure, which can be expressed through source strengths of the scattered sound field. The effect of viscosity can then be significant only if the incident wave is locally plane traveling.  相似文献   

18.
A system consisting of two circular cylinders one inside the other with parallel axes is considered. The outer cylinder of radius R2 is fixed, and the inner cylinder of radius R1 rotates with a sufficiently large angular velocity. The region between the cylinders is filled with an incompressible viscous fluid and, in the case of coaxial cylinders, Couette flow along circular trajectories arises. Upon an eccentric small displacement of the axis of the inner cylinder, the symmetry of the flow is disturbed and a force exerted on the inner cylinder by the fluid is created. Within the ideal fluid model, the force depends linearly on the transverse velocities and accelerations of the cylinder. In a viscous fluid, the force depends on the previous motion of the cylinder. It is expressed in terms of the velocity functional by analogy with the Basset force acting on a ball moving in a viscous fluid with a variable velocity.  相似文献   

19.
Flow visualization tests have been performed to examine the structure of the near-wall flow over a low-aspect ratio straight wing installed at various angles of attack a and chord Reynolds numberRe c=Uc=1.76×105. The experiments were carried out at two free-stream turbulence levels, ε=0.1% and ε=1%, the latter one having been achieved using a baffling grid. To visualize the flow, termochromic cholesteric liquid crystals and digital processing of video images were used. At the low turbulence level and α=27°, a flow stall on the lee side of the wing was observed, with a pair of largescale vortices rotating in the wing plane. Simultaneously, no vortex structures were observed on the windward wing surface. It was found the flow patterns on either side of the wing significantly changed with increasing free-stream turbulence level. A separation bubble appeared near the leading edge on the lee side of the airfoil at ε=1%, and large-scale stationary longitudinal vortices originated over the wing windward surface. The number and sizes of the longitudinal structures were found to be dependent on the angle of attack.  相似文献   

20.
We study the two-dimensional flow of foams around a circular obstacle within a long channel. In experiments, we confine the foam between liquid and glass surfaces. In simulations, we use a deterministic software, the Surface Evolver, for bubble details and a stochastic one, the extended Potts model, for statistics. We adopt a coherent definition of liquid fraction for all studied systems. We vary it in both experiments and simulations, and determine the yield drag of the foam, that is, the force exerted on the obstacle by the foam flowing at very low velocity. We find that the yield drag is linear over a large range of the ratio of obstacle to bubble size, and is independent of the channel width over a large range. Decreasing the liquid fraction, however, strongly increases the yield drag; we discuss and interpret this dependence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号