首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 58 毫秒
1.
The experimental program of the AEgIS experiment at CERN’s AD complex aims to perform the first measurement of the gravitational interaction of antimatter, initially to a precision of about 1%, to ascertain the veracity of Einstein’s Weak Equivalence Principle for antimatter. As gravity is very much weaker than electromagnetic forces, such an experiment can only be done using neutral antimatter. The antihydrogen atoms also need to be very cold for the effects of gravity to be visible above the noise of thermal motion. This makes the experiment very challenging and has necessitated the introduction of several new techniques into the experimental field of antihydrogen studies, such as pulsed formation of antihydrogen via 3-body recombination with excited state positronium and the subsequent acceleration of the formed antihydrogen using electric gradients (Stark acceleration). The gravity measurement itself will be performed using a classical Moire deflectometer. Here we report on the present state of the experiment and the prospects for the near future.  相似文献   

2.
A background-free observation of cold antihydrogen atoms is made using field ionization followed by antiproton storage, a detection method that provides the first experimental information about antihydrogen atomic states. More antihydrogen atoms can be field ionized in an hour than all the antimatter atoms that have been previously reported, and the production rate per incident high energy antiproton is higher than ever observed. The high rate and the high Rydberg states suggest that the antihydrogen is formed via three-body recombination.  相似文献   

3.
The full three-dimensional velocity distributions of decelerated and accelerated particles in a Stark decelerator for Rydberg atoms and molecules have been measured. In the experiment, argon atoms in a supersonic beam are excited to low-field and high-field seeking Stark states with principal quantum number in the range n=15 to 25 and are decelerated in a 3 mm long decelerator consisting of four electrodes on which time-dependent voltages are applied. The time dependence of the resulting inhomogeneous electric field is chosen such that the decelerating force acting on the high-field seeking states is maximized at each point along the trajectories. The three-dimensional velocity distribution of the atoms before and after the deceleration is determined by measuring times of flight and two-dimensional images of the atomic cloud on the detector. Under optimal deceleration conditions, the decrease in kinetic energy in the longitudinal dimension amounts to 1.0×10-21 J and the increase in mean kinetic energy in the transverse dimensions is only 1.0×10-23 J. The corresponding temperatures of 100 mK and 300 mK in the two transverse dimensions are sufficiently low that trapping can be envisaged. The possibility of focusing a Rydberg atom beam is demonstrated experimentally.  相似文献   

4.
5.
J. E. Palmer 《Molecular physics》2019,117(21):3108-3119
Matter-wave interferometry has been performed with helium atoms in high Rydberg states. In the experiments the atoms were prepared in coherent superpositions of Rydberg states with different electric dipole moments. Upon the application of an inhomogeneous electric field, the different forces on these internal state components resulted in the generation of coherent superpositions of momentum states. Using a sequence of microwave and electric field gradient pulses the internal Rydberg states were entangled with the momentum states associated with the external motion of these matter waves. Under these conditions matter-wave interference was observed by monitoring the populations of the Rydberg states as the magnitudes and durations of the pulsed electric field gradients were adjusted. The results of the experiments have been compared to, and are in excellent quantitative agreement with, matter-wave interference patterns calculated for the corresponding pulse sequences. For the Rydberg states used, the spatial extent of the Rydberg electron wavefunction was ~320?nm. Matter-wave interferometry with such giant atoms is of interest in the exploration of the boundary between quantum and classical mechanics. The results presented also open new possibilities for measurements of the acceleration of Rydberg positronium or antihydrogen atoms in the Earth's gravitational field.  相似文献   

6.
Cold Rydberg atoms exposed to strong magnetic fields possess unique properties which open the pathway for an intriguing many-body dynamics taking place in Rydberg gases, consisting of either matter or anti-matter systems. We review both the foundations and recent developments of the field in the cold and ultracold regime where trapping and cooling of Rydberg atoms have become possible. Exotic states of moving Rydberg atoms, such as giant dipole states, are discussed in detail, including their formation mechanisms in a strongly magnetized cold plasma. Inhomogeneous field configurations influence the electronic structure of Rydberg atoms, and we describe the utility of corresponding effects for achieving tightly trapped ultracold Rydberg atoms. We review recent work on large, extended cold Rydberg gases in magnetic fields and their formation in strongly magnetized ultracold plasmas through collisional recombination. Implications of these results for current antihydrogen production experiments are pointed out, and techniques for the trapping and cooling of such atoms are investigated.  相似文献   

7.
The aim of the ASACUSA-CUSP experiment at CERN is to produce a cold, polarised antihydrogen beam and perform a high precision measurement of the ground-state hyperfine transition frequency of the antihydrogen atom and compare it with that of the hydrogen atom using the same spectroscopic beam line. Towards this goal a significant step was successfully accomplished: synthesised antihydrogen atoms have been produced in a CUSP magnetic configuration and detected at the end of our spectrometer beam line in 2012 [1]. During a long shut down at CERN the ASACUSA-CUSP experiment had been renewed by introducing a new double-CUSP magnetic configuration and a new semi-cylindrical tracking detector (AMT) [2], and by improving the transport feature of low energy antiproton beams. The new tracking detector monitors the antihydrogen synthesis during the mixing cycle of antiprotons and positrons. In this work the latest results and improvements of the antihydrogen synthesis will be presented including highlights from the last beam time.  相似文献   

8.
Cold antihydrogen is produced when antiprotons are repeatedly driven into collisions with cold positrons within a nested Penning trap. Efficient antihydrogen production takes place during many cycles of positron cooling of antiprotons. A first measurement of a distribution of antihydrogen states is made using a preionizing electric field between separated production and detection regions. Surviving antihydrogen is stripped in an ionization well that captures and stores the freed antiproton for background-free detection.  相似文献   

9.
Cold antihydrogen atoms have been produced recently by mixing trapped antiprotons with cold positrons. The efficiency is remarkable: more than 10% of the antiprotons form antihydrogen. Future spectroscopy of antihydrogen has the potential to provide new extremely precise tests of the fundamental symmetry between matter and antimatter. In addition, cold antihydrogen atoms might permit the first direct experiments investigating antimatter gravity. A novel method to measure the gravitational acceleration of antimatter using ultra-cold antihydrogen atoms is proposed. PACS 04.80.Cc; 32.80.Pj; 36.10.-k  相似文献   

10.
We have observed the spontaneous evolution of a dense sample of Rydberg atoms into an ultracold plasma, in spite of the fact that each of the atoms may initially be bound by up to 100 cm(-1). When the atoms are initially bound by 70 cm(-1), this evolution occurs when most of the atoms are translationally cold, <1 mK, but a small fraction, approximately 1%, is at room temperature. Ionizing collisions between hot and cold Rydberg atoms and blackbody photoionization produce an essentially stationary cloud of cold ions, which traps electrons produced later. The trapped electrons rapidly collisionally ionize the remaining cold Rydberg atoms to form a cold plasma.  相似文献   

11.
Laser-stimulated radiative transitions from states close to the ionization threshold to low-lying atomic levels are considered for protons (antiprotons) in a cold electron (positron) plasma and estimates for the resulting formation rate of hydrogen (antihydrogen) atoms in the ground state are given. The estimates apply to both laser-stimulated recombination and induced radiative stabilization of high Rydberg levels. First experiments concerning laser-stimulated recombination in merged beams of electrons and protons are discussed, which have confirmed the rate predictions for this process. In view of antihydrogen formation in a cold trapped positron plasma, the use of two successive stimulated transitions is considered for obtaining a high formation rate of ground-state atoms at relatively low radiation intensity.  相似文献   

12.
We demonstrate experimentally the production of Rydberg positronium (Ps) atoms in a two-step process, comprising incoherent laser excitation, first to the 2(3)P state and then to states with principal quantum numbers ranging from 10 to 25. We find that excitation of 2(3)P atoms to Rydberg levels occurs very efficiently (~90%) and that the ~25% overall efficiency of the production of Rydberg atoms is determined almost entirely by the spectral overlap of the primary excitation laser and the Doppler broadened width of the 1 (3)S-2(3)P transition. The observed efficiency of Rydberg Ps production can be explained if stimulated emission back to the 2P states is suppressed, for example, by intermixing of the Rydberg state Stark sublevels. The efficient production of long-lived Rydberg Ps in a high magnetic field may make it possible to perform direct measurements of the gravitational free fall of Ps.  相似文献   

13.
Röhlsberger  R. 《Hyperfine Interactions》1999,119(1-4):301-304
ATHENA, one of the three approved experiments at the new facility for low energy antiprotons (AD) at CERN, has the primary goal to test CPT invariance by comparing the atomic energy levels of antihydrogen to those of hydrogen. The extended experimental program also contains studies on differences in gravitational acceleration of antimatter and matter. The production of antihydrogen atoms and their spectral response to laser light will be monitored by a sophisticated detector for the end products of antiproton and positron annihilations. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

14.
Aspects of the possible reactions of trapped antiprotons with excited state positronium atoms to form antihydrogen are discussed. Conditions are identified whereby the antihydrogen produced may be suitable for capture in a neutral trap. A discussion is given of possible use of antihydrogen to test the quantization of electric charge involving precision comparisons of hydrogen and antihydrogen (Rydberg constants), and proton and antiproton cyclotron frequencies.  相似文献   

15.
The ASACUSA collaboration at CERN-AD has recently submitted a proposal to measure the hyperfine splitting of the ground state of antihydrogen in an atomic beam line. The spectrometer will consist of two sextupoles for spin selection and analysis, and a microwave cavity to flip the spin of the antihydrogen atoms. Numerical simulations show that such an experiment is feasible if ~200 antihydrogen atoms per second can be produced in the ground state, and that an accuracy of better than 10–7 can be reached. This measurement will be a precise test of the CPT invariance. B. Juhász serves as one of the authors of this article on behalf of the ASACUSA collaboration.  相似文献   

16.
The AE?IS experiment (Antimatter Experiment: Gravity, Interferometry, Spectroscopy (Drobychev et al., 2007)), aims at directly measuring the gravitational acceleration g on a beam of cold antihydrogen ( $\overline{\rm H}$ ). After production, the $\overline{\rm H}$ atoms will be driven to fly horizontally with a velocity of a few 100 m/s for a path length of about 1 meter. The small deflection, few tens of μm, will be measured using two material gratings coupled to a position-sensitive detector working as a Moiré deflectometer similarly to what has been done with atoms (Oberthaler et al., Phys Rev A 54:3165, 1996). Details about the detection of the $\overline{\rm H}$ annihilation point at the end of the flight path with a position-sensitive microstrip detector and a silicon tracker system will be discussed.  相似文献   

17.
The motivation for production and precision spectroscopy of antihydrogen atoms is outlined. An experimental configuration is considered, concerning laser-microwave spectroscopy of a fast hydroten beam with characteristics similar to those of an antihydrogen beam emanating from an antiproton-positron overlap region in an antiproton storage ring. In particular, a possible experiment for the measurement of the ground state hyperfine structure splitting is described.  相似文献   

18.
The gravitational force on antimatter has never been directly measured. A method is suggested for making this measurement by directing a low-energy beam of neutral antihydrogen atoms through a transmission-grating interferometer and measuring the gravitationally-induced phase shift in the interference pattern. A 1% measurement of the acceleration due to the Earth's gravitational field (¯ g) should be possible from a beam of about 105 or 106 atoms. If more antihydrogen can be made, a much more precise measurement of¯ g would be possible. A method is suggested for producing an antihydrogen beam appropriate for this experiment.  相似文献   

19.
本文从实验上研究了超冷nS Rydberg原子在外电场脉冲作用下的态转移现象. 采用双光子激发超冷基态原子制备超冷Rydberg原子, 通过脉冲场电离法探测超冷Rydberg原子的离子信号, 实验研究了由外加脉冲电场产生的nS能级和多重态的避免交叉, 获得了在外电场脉冲作用下nS态原子的态转移现象, 实验与理论计算的结果相一致. 关键词: Rydberg原子 态转移 能级避免交叉  相似文献   

20.
We demonstrate temporally controlled modulation of cold antihydrogen production by periodic RF heating of a positron plasma during antiproton-positron mixing in a Penning trap. Our observations have established a pulsed source of atomic antimatter, with a rise time of about 1 s, and a pulse length ranging from 3 to 100 s. Time-sensitive antihydrogen detection and positron plasma diagnostics, both capabilities of the ATHENA apparatus, allowed detailed studies of the pulsing behavior, which in turn gave information on the dependence of the antihydrogen production process on the positron temperature T. Our data are consistent with power law scaling T (-1.1+/-0.5) for the production rate in the high temperature regime from approximately 100 meV up to 1.5 eV. This is not in accord with the behavior accepted for conventional three-body recombination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号