首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Measurements of Zeeman, Zeeman-hyperfine and ro-vibrational transitions in \(\bar {H}_{2}^{-}(\bar {p}e^{+}\bar {p})\) compared to \(H_{2}^{+}\) have the potential for more precise tests of CPT than can be obtained from antiprotons and antihydrogen. In particular, measurements of ro-vibrational transitions have a potential sensitivity to a difference between antiproton and proton mass three orders of magnitude higher than antihydrogen/hydrogen. Methods are outlined for precision measurements on a single \(\bar {H}_{2}^{-}\) or \({H}_{2}^{+}\) ion in a cryogenic Penning trap, with non-destructive state identification using the continuous Stern-Gerlach effect or changes in mass. \(\bar {H}_{2}^{-}\) can be produced using the \(\bar {H}^{+}+\bar {p} \rightarrow \bar {H}_{2}^{-} + e^{+}\) reaction.  相似文献   

3.
GBAR     
The GBAR project aims to perform the first test of the Equivalence Principle with antimatter by measuring the free fall of ultra-cold antihydrogen atoms. The objective is to measure the gravitational acceleration to better than a percent in a first stage, with a long term perspective to reach a much higher precision using gravitational quantum states of antihydrogen. The production of ~20 μK atoms proceeds via sympathetic cooling of $\mathrm{\overline{H}^+}$ ions by Be?+? ions. $\mathrm{\overline{H}^+}$ ions are produced via a two-step process, involving the interaction of bursts of 107 slow antiprotons from the AD (or ELENA upgrade) at CERN with a dense positronium cloud. In order to produce enough positronium, it is necessary to realize an intense source of slow positrons, a few 108 per second. This is done with a small electron linear accelerator. A few 1010 positrons are accumulated every cycle in a Penning–Malmberg trap before they are ejected onto a positron-to-positronium converter. The overall scheme of the experiment is described and the status of the installation of the prototype positron source at Saclay is shown. The accumulation scheme of positrons is given, and positronium formation results are presented. The estimated performance and efficiency of the various steps of the experiment are given.  相似文献   

4.
We examine the colour structure and charged particle yield for both the $t\bar t$ signal and the irreducible background processes contributing to $e^ + e^ - \to b\bar bW^ + W^ - $ production close to the $t\bar t$ threshold. The charged particle multiplicity for the various components of the cross section is computed as a function of several kinematic variables. Our study may have important implications for recently proposed studies of interconnection phenomena in $t\bar t$ production at high-energye + e ? colliders.  相似文献   

5.
Since antiprotons have been captured in an ion trap, we consider the possibility of producing antihydrogen by merging cold trapped plasmas of antiprotons and positrons. The calculated, instantaneous rate for antihydrogen production by the 3-body recombination is much higher than for other proposed techniques, opening up intriguing experimental possibilities.  相似文献   

6.
Three-charge-particle collisions with participation of ultra-slow antiprotons ( \(\overline {\rm {p}}\) ) is the subject of this work. Specifically we compute the total cross sections and corresponding thermal rates of the following three-body reactions: \(\overline {\rm p}+(e^+e^-) \rightarrow \overline {\rm {H}} + e^-\) and \(\overline {\rm p}+(\mu ^+\mu ^-) \rightarrow \overline {\rm {H}}_{\mu } + \mu ^-\) , where \(e^-(\mu ^-)\) is an electron (muon) and \(e^+(\mu ^+)\) is a positron (antimuon) respectively, \(\overline {\rm {H}}=(\overline {\rm p}e^+)\) is an antihydrogen atom and \(\overline {\rm {H}}_{\mu }=(\overline {\rm p}\mu ^+)\) is a muonic antihydrogen atom, i.e. a bound state of \(\overline {\rm {p}}\) and μ +. A set of two-coupled few-body Faddeev-Hahn-type (FH-type) equations is numerically solved in the framework of a modified close-coupling expansion approach.  相似文献   

7.
We present PHENIX recent results on charged particle and transverse energy densities measured at mid-rapidity in Au?Au collisions at $\sqrt {s_{NN} } = 130$ GeV and 200 GeV over a broad range of centralities. The mean transverse energy per charged particle is derived. The first PHENIX measurements at $\sqrt {s_{NN} } = 19.6$ GeV are also presented. A comparison with calculations from various theoretical models is performed.  相似文献   

8.
In the framework of the GBAR (Gravitational Behaviour of Antihydrogen at Rest) experiment, cross sections for antihydrogen ion ( \(\bar {\mathrm {H}}^{+}\) ) production in collisions between antiprotons ( \(\bar {\mathrm {p}}\) ) and excited positronium atoms (Ps), with intermediate production of antihydrogen ( \(\bar {\mathrm {H}}\) ), have been computed using a perturbative theory, namely Continuum Distorted Wave - Final State (CDW-FS). The results suggest to use antiprotons at 1, 2 or 6 keV with, respectively, Ps(3p,3d), Ps(2p) or no Ps excitation. A simulation using these cross sections is under development to investigate the reaction chamber geometry and the parameters of the different beams (positrons, antiprotons and laser). This simulation, focusing on Ps(3d), predicts at least one \(\bar {\mathrm {H}}^{+}\) ion per pulse of 3·106 \(\bar {\mathrm {p}}\) at 1 and 6 keV, and highlights both the interest of positronium excitation and the need for short pulses of particles.  相似文献   

9.
The inclusive and semi-inclusive neutral strange particle cross sections are used to estimate semi-inclusive charged strange particle cross sections in antiproton-proton interactions of the pairsK 0 or \(\Lambda /\bar \Lambda \) with a charged strange particle and of double charged strange particles. Their sums are given as well.  相似文献   

10.
11.
We demonstrate three-dimensional imaging of antiprotons in a Penning trap, by reconstructing annihilation vertices from the trajectories of the charged annihilation products. The unique capability of antiparticle imaging has allowed, for the first time, the observation of the spatial distribution of the particle loss in a Penning trap. The radial loss of antiprotons on the trap wall is localized to small spots, strongly breaking the azimuthal symmetry expected for an ideal trap. Our observations have important implications for detection of antihydrogen annihilations.  相似文献   

12.
The discovery potential for charged Higgs bosons has been studied with full-statistics background simulations for $\sqrt s$ =500 GeV and ?=10fb?1. For the hadronic decay channels $H^ + H^ - \to \operatorname{c} \bar s\bar cs$ , a microvertex detector is crucial for establishing a signal over the $e^ + e^ - \to t\bar t$ background. A combination with a search in the channels $H^ + H^ - \to c\bar s\tau ^ - \nu ,\tau ^ + \nu \tau ^ - \bar \nu$ allows detection sensitivity for charged Higgs bosons up to a mass of about 210GeV, independent of the charged Higgs decay modes. Sensitivity regions in them A-tanβ parameter space of the Minimal Supersymmetric extention of the Standard Model (MSSM) are given.  相似文献   

13.
The band alignments of high-k Er2O3 films grown on Ge substrates by molecular beam epitaxy are determined by X-ray photoelectron spectroscopy. The valence-band and the conduction-band offsets of Er2O3 to Ge are found to be $3.16\pm0.02$ and $2.13\pm0.02\ \mbox{eV}$ , respectively. The energy gap of Er2O3 is $5.96\pm0.02\ \mbox{eV}$ as determined by the optical spectrophotometry. From the band offset viewpoint, the above results indicate that Er2O3 could be a promising candidate for high-k gate dielectrics on Ge substrate.  相似文献   

14.
We have demonstrated storage of plasmas of the charged constituents of the antihydrogen atom, antiprotons and positrons, in a Penning trap surrounded by a minimum-B magnetic trap designed for holding neutral antiatoms. The neutral trap comprises a superconducting octupole and two superconducting, solenoidal mirror coils. We have measured the storage lifetimes of antiproton and positron plasmas in the combined Penning-neutral trap, and compared these to lifetimes without the neutral trap fields. The magnetic well depth was 0.6 T, deep enough to trap ground state antihydrogen atoms of up to about 0.4 K in temperature. We have demonstrated that both particle species can be stored for times long enough to permit antihydrogen production and trapping studies.  相似文献   

15.
The average multiplicities of charged hadrons and of π+, π? and π0 mesons, produced in \(\bar v\) Ne and νNe charged current interactions in the forward and backward hemispheres of theW ±-nucleon center of mass system, are studied with data from BEBC. The dependence of the multiplicities on the hadronic mass (W) and on the laboratory rapidity (y Lab) and the energy fraction (z) of the pion is also investigated. Special care is taken to determine the π0 multiplicity accurately. The ratio of average π multiplicities \(\frac{{2\left\langle {n_{\pi ^O } } \right\rangle }}{{[\left\langle {n_{\pi ^ + } } \right\rangle + \left\langle {n_{\pi ^ - } } \right\rangle ]}}\) is consistent with 1. In the backward hemisphere \(\left\langle {n_{\pi ^O } } \right\rangle \) is positively correlated with the charged multiplicity. This correlation, as well as differences in multiplicities between \(\mathop v\limits^{( - )} \) and \(\mathop v\limits^{( - )} \) , \(\mathop v\limits^{( - )} \) scattering, is attributed to reinteractions inside the neon nucleus of the hadrons produced in the initial \(\mathop v\limits^{( - )} \) interaction.  相似文献   

16.
The absolute scale of jet energy set in a CMS experiment using the W mass constraint in $t\bar t$ events with $W \to q\bar q$ decay is studied. The main effects leading to systematic shifts in the jet-energy scale are identified. Estimations of these shifts are given.  相似文献   

17.
The performance of proposed antihydrogen spectroscopy or gravity experiments will crucially depend on the temperature of the initial antihydrogen sample. Measurements by ATRAP and ATHENA have shown that antihydrogen produced with the nested-trap technique is much hotter than the temperature of the surrounding trap. Therefore, novel schemes for antihydrogen recombination as well as for the pre-cooling of antiprotons are being considered. We are investigating a possible antiproton cooling technique based on the laser cooling of negative osmium ions. If demonstrated to be successful, it will allow the sympathetic cooling of antiprotons—or any negatively charged particles—to microkelvin temperatures. As a first milestone toward the laser cooling of negative ions, we have performed collinear laser spectroscopy on negative osmium and determined the transition frequency and the cross-section of the relevant bound–bound electric-dipole transition.  相似文献   

18.
Presently the most popular way to prepare high quality polarized antiproton beams is the so called spin filter method. The feasibility of the method has been proven for a proton beam and measurements of the spin dependent interaction of antiprotons have been proposed by the PAX collaboration. Another well known source for polarized antiprotons is the $\bar{\Lambda}$ decay which was used at FERMILAB in the only experiment performed so far with polarized antiprotons. An alternative approach for polarized antiproton beams may be the production process itself. If the produced antiprotons show polarization it would be rather simple to handle a polarized antiproton beam in the existing antiproton collector and cooler at CERN just like in the unpolarized case.  相似文献   

19.
We study the $\overline{\nu}_{e}-e$ scattering from low to ultrahigh energy in the framework of Higgs Triplet Model (HTM). We add the contribution of charged Higgs boson exchange to the total cross section of the scattering. We obtain the upper bound $h_{ee}/M_{H^{\pm}}\lesssim2.8\times10^{-3}~\mbox{GeV}^{-1}$ in this process from low energy experiment. We show that by using the upper bound obtained, the charged Higgs contribution can give enhancements to the total cross section with respect to the SM prediction up to 5.16 % at E≤1014 eV and maximum at $s\approx M_{H^{\pm}}^{2}$ and would help to determine the feasibility experiments to discriminate between SM and HTM at current available facilities.  相似文献   

20.
The energy loss functions Im \(\left( { - \frac{1}{\varepsilon }} \right)\) of Au, Ag and Ag-Au alloys are determined from energy loss spectra of fast electrons, using different methods in the energy regions 2 to 4 eV and 4 to 40 eV. The optical constants ?1 und ?2 are calculated from the energy loss functions by Kramers-Kronig analysis. The experimental results show a different dependence in the optical behaviour of the alloy on the alloying component: if Au is added to Ag, the effect on the optical properties is stronger than in the reverse case. Between 50 and 70 at.% Au in the alloy the specific properties of Ag and Au vanish completely. An interpretation of the energy loss maxima as surface plasma oscillation, volume plasma oscillation and interband transition is attempted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号