首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Digital image processing was used to obtain the deformation fields around a propagating crack tip from photographic films recorded by a high-speed Cranz-Schardin camera. The in-plane displacements and strains determined from the process were then used to compute the dynamic stress intensity factor and the remote stress component parallel to the crack face.K dominance is discussed using the experimental data. Surface roughness of the fractured surface is also examined.  相似文献   

2.
A three-nested-deformation model is proposed to describe crack-tip fields in rubber-like materials with large deformation.The model is inspired by the distribution of the measured in-plane and out-of-plane deformation.The inplane displacement of crack-tip fields under both Mode I and mixed-mode(Mode I-II) fracture conditions is measured by using the digital Moire’ method.The deformation characteristics and experimental sector division mode are investigated by comparing the measured displacement fields under different fracture modes.The out-of-plane displacement field near the crack tip is measured using the three-dimensional digital speckle correlation method.  相似文献   

3.
The crack tip fields are investigated for a cracked functionally graded material (FGM) plate by Reissner’s linear plate theory with the consideration of the transverse shear deformation generated by bending. The elastic modulus and Poisson’s ratio of the functionally graded plates are assumed to vary continuously through the coordinate y, according to a linear law and a constant, respectively. The governing equations, i.e., the 6th-order partial differential equations with variable coefficients, are derived in the polar coordinate system based on Reissner’s plate theory. Furthermore, the generalized displacements are treated in a separation-of-variable form, and the higher-order crack tip fields of the cracked FGM plate are obtained by the eigen-expansion method. It is found that the analytic solutions degenerate to the corresponding fields of the isotropic homogeneous plate with Reissner’s effect when the in-homogeneity parameter approaches zero.  相似文献   

4.
Using the Burton and Miller formulation to predict the scattering of flow‐induced noise by a body immersed in the flow requires the near‐field pressure and pressure gradient incident on the body. In this paper, Lighthill's acoustic analogy is used to derive formulations for the near‐field pressure and pressure gradient at any point within the flow noise source region, including points on the body. These near‐field formulations involve strongly singular and hypersingular volume and surface integrals. To evaluate these singular integrals, an effective singularity regularization technique is derived. An analytical source distribution is used to demonstrate the accuracy of the method. A cell‐averaged representation of this analytical source distribution, similar to the data stored by computational fluid dynamics solvers, is also created. A piecewise linear, continuous source distribution is generated from these cell‐average values, producing a C0 distribution. A k‐exact reconstruction technique is then used to create high‐order polynomials of the solution variables for each volume cell. These high‐order polynomials are constructed from its cell average value and the average values of the nearby cells. The source distribution created using the k‐exact reconstruction is discontinuous across cell boundaries but exhibits a smooth polynomial distribution within each cell. The near‐field pressure and pressure gradient predicted using these reconstructed source distributions are compared with the results obtained using the analytical distribution. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
In this paper the fully nonlinear theory of finite deformations of an elastic solid is used to study the elastostatic field near the tip of a crack. The special elastic materials considered are such that the differential equations governing the equilibrium fields may lose ellipticity in the presence of sufficiently severe strains.The first problem considered involves finite anti-plane shear (Mode III) deformations of a cracked incompressible solid. The analysis is based on a direct asymptotic method, in contrast to earlier approaches which have depended on hodograph procedures.The second problem treated is that of plane strain of a compressible solid containing a crack under tensile (Mode I) loading conditions. The materials is characterized by the so-called Blatz-Ko elastic potential. Again, the analysis involves only direct local considerations.for both the Mode III and Mode I problems, the loss of equilibrium ellipticity results in the appearance of curves (elastostatic shocks) issuing from the crack-tip across which displacement gradients and stresses are discontinuous.The results communicated in this paper were obtained in the course of an investigation supported by Contract N00014-75-C-0196 with the Office of Naval Research.  相似文献   

6.
Summary This paper reconsiders the problem of determining the elastostatic field near the tip of a crack in an all-round infinite body deformed by a Mode III loading at infinity to a state of anti-plane shear. The problem is treated for a class of incompressible, homogeneous, isotropic elastic materials whose constitutive laws permit a loss of ellipticity in the governing displacement equation of equilibrium at sufficiently severe shearing strains. The analysis represents a generalization of that reported in an earlier study and, as before, is carried out for the small-scale nonlinear crack problem, in which a crack of finite length is replaced by a semi-infinite one, and the nonlinear field far from the crack-tip is matched to the near field predicted by the linearized theory. The methods employed in the present paper are necessarily largely qualitative, since they apply to all materials in the class considered. The principal feature of the resulting elastic field is the presence of two symmetrically located curves issuing from the crack-tip and bearing discontinuities in displacement gradient and stress.The results communicated in this paper were obtained in the course of an investigation supported in part by Contract N00014-75-C-0196 with the Office of Naval Research in Washington, D.C.  相似文献   

7.
Based on mechanics of anisotropic material, the dynamic crack propagation problem of I/II mixed mode crack in an infinite anisotropic body is investigated. Expressions of dynamic stress intensity factors for modes I and II crack are obtained. Components of dynamic stress and dynamic displacements around the crack tip are derived. The strain energy density theory is used to predict the dynamic crack extension angle. The critical strain energy density is determined by the strength parameters of anisotropic materials. The obtained dynamic crack tip fields are unified and applicable to the analysis of the crack tip fields of anisotropic material, orthotropic material and isotropic material under dynamic or static load. The obtained results show Crack propagation characteristics are represented by the mechanical properties of anisotropic material, i.e., crack propagation velocity M and fiber direction α. In particular, the fiber direction α and the crack propagation velocity M give greater influence on the variations of the stress fields and displacement fields. Fracture angle is found to depend not only on the crack propagation but also on the anisotropic character of the material.  相似文献   

8.
A linear elastic body in plane strain which contains a stationary crack and which is initially at rest and stress free is considered. It is shown that if the elastodynamic displacement field and stress intensity factor are known, as functions of crack length, for any symmetrical distribution of time-varying forces which acts on the body, subsequent to t=0, then the stress intensity factor due to any other symmetrical load system whatsoever which acts on the same body may be directly determined. The other load system may be of arbitrary spatial distribution and time variation. Further, that part of the elastodynamic displacement field due to the other load system, which arises from the presence of the crack, may also be directly determined. The results are obtained by extension of Rice's mode of derivation of the corresponding Bueckner-Rice elastostatic results to Laplace-transformed elastodynamic variables. Likewise, the existence of a universal elastodynamic “weight function” for any given cracked body is demonstrated. As an application, Freund's recent result for the stress intensity factor due to suddenly applied concentrated forces on the crack surfaces is derived directly by our method, from de Hoop's earlier solution for suddenly applied uniform pressures.  相似文献   

9.
In the present paper, Gurson's constitutive equation, which takes into account the development of voids, is used to study the behaviour of the material in the region near crack tip. Furthermore, the effect of void development on Young's modulus, which was not considered by Gurson, is taken into consideration. The analyses on void development, on stress distribution near crack tip, and on the variance of COD for the plane strain mode I problem are carried out with the large elastic-plastic deformation finite element method. The results are compared with those estimated from the Prandtl-Reuss constitutive equation.  相似文献   

10.
1MechhacalModelThefractUreproblemwhichisthesameasthatinpaper[I]isfurtherdiscussedinthispaper.TheanalysisoffractUrebehavioursnearcracktipforinfinitelinearelasticorthotropiccompositeplatewithacentralthroughcrackoflengthZaiscarriedout.ThegeometryandloadingcondihonsareshowninFig.1.Tosolvesuchaproblem,weneedtosolvethepanaldifferentialequationwiththefollowingboundaryconditions:wherewisdeflectionofcoddleplane;M.andM,arebendingmoment,Ma.istwistingmoment,andstiffnessmatrixFromthetheoryofplateL'],w…  相似文献   

11.
This paper deals with strain field near a crack tip in a rubber-like material under plane strain condition. The constitutive relation adopted here is valid for both small and large strain. The asymptotic equations are derived for a shrinking sector and expanding sector. The closed mathematic solution is obtained for the latter while a numerical solution is found for the former. By connecting deformation of the two sectors, the crack tip field character is found.  相似文献   

12.
Under the condition that any perfectly plastic stress components at a crack tip are nothing but the functions of 0 only making use of equilibrium equations. Hill anisotropic yield condition and unloading stress-strain relations, in this paper, we derive the general analytical expressions of anisotropic plastic stress fields at the slowly steady propagating tips of plane and anti-plane strain. Applying these general analytical expressions to the concrete cracks, the analytical expressions of anisotropic plastic stress fields at the-slowly steady propagating tips of Mode I and Mode III cracks are obtained. For the isotropic plastic material, the anisotropic plastic stress fields at a slowly propagating crack tip become the perfectly plastic stress fields.  相似文献   

13.
Under the condition that all the perfectly plastic stress components at a crack tiP arethe functions ofθonly,making use of the Mises yield condition,steady-state movingequations and elastic perfectly-plastic constitutive equations,we derive the generallyanalytical expressions of perfectly plastic fields at a rapidly propagating plane-stress cracktip.Applying these generally analytical expressions to the concrete crack,we obtain theanalytical expressions of perfectly plastic fields at the rapidly propagating tips of,modesⅠandⅡplane-stress cracks.  相似文献   

14.
When a crack is running, the temperature rise is a quite important actual problem, which not only depends on some material constants, but also the propagation velocity and the distribution of the heat resource density. In this paper, the shape of plastic zone around the crack tip and the density of heat resource have been discussed and the model of the temperature fields has been proposed. The numerical results with PMMA are given and compared with other theories and experimental results  相似文献   

15.
16.
Fatigue crack growth and its threshold are investigated at a stress ratio of 0.5 for the three-point bend specimen made of Austenitic stainless steel. The effect of grain size on the crack tip plastic deformation is investigated. The results show that the threshold value Δkth increases linearly with the square root of grain size d and the growth rate is slower for materials with larger grain size. The plastic zone size and ratio for different grain sizes are different at the threshold. The maximum stress intensity factor is kmax and σys is the yield strength. At the same time, the characteristics of the plastic deformation development is discontinuous and anti-symmetric as the growth rate is increased from 2·10—8 to 10−7 mm/cycle.A dimensionless relation of the form for collating fatigue crack starting growth data is proposed in which Δkth represents the stress intensity factor range at the threshold. Based on experimental results, this relation attains the value of 0.6 for a fatigue crack to start growth in the Austenitic stainless steel investigated in this work. Metallurgical examinations were also carried out to show a transgranular shear mode of cyclic cleavage and plastic shear.  相似文献   

17.
The crack tip fields of stress, strain and damage for concrete under both antiplane shear and plane strain conditions are investigated based on the damage model proposed by Mazars and Lemaitre [2]. The structures of near tip fields obtained are similar to those for an elastic-perfectly-plastic material. It has been found that damage boundaries can not be determined by the near-tip analysis due to the discontinuities of stresses on the damage boundaries induced by the damage model used in the present paper.The Project is Supported by National Natural Science Fundation of China.  相似文献   

18.
This paper considers an interfacial crack with a cohesive zone ahead of the crack tip in a linearly elastic isotropic bi-material and derives the mixed-mode asymptotic stress and displacement fields around the crack and cohesive zone under plane deformation conditions (plane stress or plane strain). The field solution is obtained using elliptic coordinates and complex functions and can be represented in terms of a complete set of complex eigenfunction terms. The imaginary portion of the eigenvalues is characterized by a bi-material mismatch parameter ε = arctanh(β)/π, where β is a Dundurs parameter, and the resulting fields do not contain stress singularity. The behaviors of “Mode I” type and “Mode II” type fields based on dominant eigenfunction terms are discussed in detail. For completeness, the counterpart for the Mode III solution is included in an appendix.  相似文献   

19.
Plane strain slip line fields, in which plasticity does not fully surround the crack tip have been developed for mode I and mixed mode I\II cracks under contained yielding. Analytical solutions have been assembled using slip line theory for the plastic sectors and semi-infinite wedge solutions for the elastic sectors. These solutions are compared with finite element solutions based on modified boundary layer formulations. The analytical solutions agree well with numerical solutions, and form a family of fields with incomplete plasticity around the crack tip.  相似文献   

20.
Elastic perfectly-plastic asymptotic plane stress crack tip fields have been constructed by assembling elastic, constant stress and fan sectors under a complete range of mixed mode I/II states of loading. The angular stress distributions are fully continuous, and do not contain the stress discontinuities which have been a feature of many previously proposed solutions. The analytic solutions are verified by finite element solutions under contained yielding conditions. The structure of the elastic perfectly-plastic fields is compared to the structure of the asymptotic strain hardening fields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号