首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
以过渡金属乙酸盐和乙酸锂为原料,柠檬酸为螯合剂,通过溶胶-凝胶法结合高温煅烧法制备了锂离子电池富锂锰基正极材料xLi2MnO3·(1-x)Li[Ni1/3Mn1/3Co1/3]O2,采用X射线衍射(XRD),扫描电子显微镜(SEM)和电化学性能测试对所得样品的结构,形貌及电化学性能进行了表征.结果表明:x=0.5时,在900°C下煅烧12h得到颗粒均匀细小的层状xLi2MnO3·(1-x)Li[Ni1/3Mn1/3Co1/3]O2材料,并具有良好的电化学性能,在室温下以20mA·g-1的电流密度充放电,2.0-4.8V电位范围内首次放电比容量高达260.0mAh·g-1,循环40次后放电比容量为244.7mAh·g-1,容量保持率为94.12%.  相似文献   

2.
The cathode in rechargeable lithium-ion batteries operates by conventional intercalation; Li+ is extracted from LiCoO2 on charging accompanied by oxidation of Co3+ to Co4+; the process is reversed on discharge. In contrast, Li+ may be extracted from Mn4+-based solids, e.g., Li2MnO3, without oxidation of Mn4+. A mechanism involving simultaneous Li and O removal is often proposed. Here, we demonstrate directly, by in situ differential electrochemical mass spectrometry (DEMS), that O2 is evolved from such Mn4+ -containing compounds, Li[Ni(0.2)Li(0.2)Mn(0.6)]O2, on charging and using powder neutron diffraction show that O loss from the surface is accompanied by diffusion of transition metal ions from surface to bulk where they occupy vacancies created by Li removal. The composition of the compound moves toward MO(2). Understanding such unconventional Li extraction is important because Li-Mn-Ni-O compounds, irrespective of whether they contain Co, can, after O loss, store 200 mAhg(-1) of charge compared with 140 mAhg(-1) for LiCoO(2).  相似文献   

3.
采用共沉淀-高温固相烧结法合成了富镍型三元复合正极材料LiNi0.5Co0.2Mn0.3O2.恒流充放电测试表明,材料在3.0~4.4 V下0.2C放电容量达到179.2 mAh.g-1,但在55℃下经历100次充放电循环后发生急剧的容量衰减.电化学交流阻抗谱、X射线光电子能谱和原子发射光谱等实验表明,在高温高电压下,电解液与LiNi0.5Co0.2Mn0.3O2电极材料之间的副反应加剧,导致过渡金属原子溶出,该材料局域结构被破坏.同时,电极材料表面还沉积了高阻抗的LiF/MFx层,使得在电极的充放电过程中电荷转移阻抗和Li+扩散阻抗不断增加,以致电池容量急剧衰减.  相似文献   

4.
万云海  袁国亮  夏晖 《电化学》2012,(3):279-285
高能量密度、功率密度和高温度稳定性的全固态薄膜锂离子电池是微电子器件的理想电源.开发新型的大比容量正极薄膜材料是解决问题的关键之一.与LiCoO2正极相比,层状结构的LiNi0.5Mn0.5O2有更高的可逆比容量和结构稳定性.本文应用脉冲激光沉积法制备LiNi0.5Mn0.5O2沉积薄膜,研究了衬底材料、温度对薄膜的微观结构、表面形貌及组分的影响.由LiNi0.5Mn0.5O2电极组装半电池,研究了薄膜的电化学性能与晶体结构、表面形貌及组分间的关系,表征了LiNi0.5Mn0.5O2沉积薄膜于不同充电截止电压的循环稳定性及倍率性能,并讨论了LiNi0.5Mn0.5O2薄膜的结构特点.  相似文献   

5.
锂离子电池正极材料LiMn2-xCrxO4电化学性能的研究   总被引:4,自引:1,他引:4  
针对尖晶石型LiMn2O4锂离子电池正极材料的容量衰减,提出了相应的抑制方法,所合成的LiMn2-xCrxO4(0相似文献   

6.
调研了全球锂离子电池正极材料LiCoO2、LiNiO2、LiMn2O4、LiFePO4 LiNi0.8 Co0.2 O2和Li(CoMnNi)1/3O2的学术研究论文和技术专利申请与授权数按年和语言分布情况。综述了前4种材料作锂离子电池正极材料尚存在的问题和解决对策进展。例如,通过掺杂其他元素、表面包覆、细化材料颗粒及改善正极结构设计来提高正极材料的充放电容量、寿命、功率密度和电池高功率密度使用时的安全性。  相似文献   

7.
The stability of the valence state of the 3d transition metal ions and the stoichiometry of LiMO(2) (M = Co, Ni, Mn) layered oxides at the surface-electrolyte interface plays a crucial role in energy storage applications. The surface oxidation/reduction of the cations caused by the contact of the solids to air or to the electrolyte results in the blocking of the Li-transport through the interface that leads to the fast batteries deterioration. The influence of the end-of-charge voltage on the chemical composition and the oxidation state of 3d transition metal ions, as well as the stability of the solid-electrolyte interface formed during the electrochemical Li-deintercalation/intercalation of the LiCoO(2) and Li(Ni,Mn,Co)O(2), have been investigated by X-ray photoelectron spectroscopy. While the chemical composition of the solid-electrolyte interface is similar for both layered oxide surfaces, the electrochemical cycling to some critical voltage values leads to the disappearance of the interface. By the analysis of the shape of the 2p and 3s photoelectron emissions we show that the formation of the solid-electrolyte interface layer correlates with the partial reduction of the trivalent Co ions at the electrolyte-LiCoO(2) interface and the amount of the Co(2+) ions is increased as the solid-electrolyte interface vanishes. In contrast, the Mn(4+), Co(3+) and Ni(2+) ions of the Li(Ni,Mn,Co)O(2) are stable at the interface under the electrochemical cycling to higher end-of-charge voltage. A correlation between deterioration of the LiCoO(2) and Li(Ni,Mn,Co)O(2) batteries and the change of electronic structure at the surface/interface after the electrochemical cycling has been found. The dissolution of the solid-electrolyte interface layer might be the reason for the fast deterioration of the Li-ion batteries.  相似文献   

8.
The electronic and local structures of partially anion-substituted lithium manganese spinel oxides as positive electrodes for lithium-ion batteries were investigated using X-ray absorption spectroscopy (XAS). LiMn(1.8)Li(0.1)Ni(0.1)O(4-η)F(η) (η = 0, 0.018, 0.036, 0.055, 0.073, 0.110, 0.180) were synthesized by the reaction between LiMn(1.8)Li(0.1)Ni(0.1)O(4) and NH(4)HF(2). The shift of the absorption edge energy in the XANES spectra represented the valence change of Mn ion with the substitution of the low valent cation as Li(+), Ni(2+), or F(-) anion. The local structural change at each compound with the amount of a Jahn-Teller Mn(3+) ion could be observed by EXAFS spectra. The discharge capacity of the tested electrode was in the order of LiMn(2)O(4) > LiMn(1.8)Li(0.1)Ni(0.1)O(4-η)F(η) (η = 0.036) > LiMn(1.8)Li(0.1)Ni(0.1)O(4) while the cycleability was in the order of LiMn(1.8)Li(0.1)Ni(0.1)O(4-η)F(η) (η = 0.036) ≈ LiMn(1.8)Li(0.1)Ni(0.1)O(4) > LiMn(2)O(4). It was clarified that LiMn(1.8)Li(0.1)Ni(0.1)O(4-η)F(η) has a good cycleability because of the anion doping effect and simultaneously shows acceptable rechargeable capacity because of the large amount of the Jahn-Teller Mn(3+) ions in the pristine material.  相似文献   

9.
The high capacity of Ni-rich Li[Ni(1-x)M(x)]O(2) (M = Co, Mn) is very attractive, if the structural instability and thermal properties are improved. Li[Ni(0.5)Mn(0.5)]O(2) has good thermal and structural stabilities, but it has a low capacity and rate capability relative to the Ni-rich Li[Ni(1-x)M(x)]O(2). We synthesized a spherical core-shell structure with a high capacity (from the Li[Ni(0.8)Co(0.1)Mn(0.1)]O(2) core) and a good thermal stability (from the Li[Ni(0.5)Mn(0.5)]O(2) shell). This report is about the microscale spherical core-shell structure, that is, Li[Ni(0.8)Co(0.1)Mn(0.1)]O(2) as the core and a Li[Ni(0.5)Mn(0.5)]O(2) as the shell. A high capacity was delivered from the Li[Ni(0.8)Co(0.1)Mn(0.1)]O(2) core, and a high thermal stability was achieved by the Li[Ni(0.5)Mn(0.5)]O(2) shell. The core-shell structured Li[(Ni(0.8)Co(0.1)Mn(0.1))(0.8)(Ni(0.5)Mn(0.5))(0.2)]O(2)/carbon cell had a superior cyclability and thermal stability relative to the Li[Ni(0.8)Co(0.1)Mn(0.1)]O(2) at the 1 C rate for 500 cycles. The core-shell structured Li[(Ni(0.8)Co(0.1)Mn(0.1))(0.8)(Ni(0.5)Mn(0.5))(0.2)]O(2) as a new positive electrode material is a significant breakthrough in the development of high-capacity lithium batteries.  相似文献   

10.
Mo doped Li excess transition metal oxides formulated as 0.3Li[Li(0.33)Mn(0.67)]O(2)·0.7Li[Ni(0.5-x)Co(0.2)Mn(0.3-x)Mo(2x)]O(2) were synthesized using the co-precipitation process. The effects of the substitution of Ni and Mn with Mo were investigated for the density of the states, the structure, cycling stability, rate performance and thermal stability by tools such as first principle calculations, synchrotron X-ray diffraction, field-emission SEM, solid state (7)Li MAS nuclear magnetic resonance (NMR), X-ray photoelectron spectroscopy (XPS), elemental mapping by scanning TEM (STEM), inductively coupled plasma atomic emission spectrometry (ICP-AES) and a differential scanning calorimeter (DSC). It was confirmed that high valence Mo(6+) doping of the Li-excess manganese-nickel-cobalt layered oxide in the transition metal enhanced the structural stability and electrochemical performance. This increase was due to strong Mo-O hybridization inducing weak Ni-O hybridization, which may reduce O(2) evolution, and metallic behavior resulting in a diminishing cell resistance.  相似文献   

11.
Five trinuclear complexes [M(bpca)(2)(M'(hfac)(2))(2)] (where MM'(2) = NiMn(2), CuMn(2), FeMn(2), NiFe(2), and FeFe(2); Hbpca = bis(2-pyridylcarbonyl)amine; and Hhfac = hexafluoroacetylacetone) were synthesized almost quantitatively by the reaction of [M(bpca)(2)] and [M'(hfac)(2)] in 1:2 molar ratio, and their structures and magnetic properties were investigated. Three complexes, with M' = Mn, crystallize in the same space group, Pna2(1), whereas two complexes, with M' = Fe, crystallize in P4(1), and complexes within each set are isostructural to one another. In all complexes, [M(bpca)(2)] acts as a bis-bidentate bridging ligand to form a linear trinuclear complex in which three metal ions are arranged in the manner M'-M-M'. The central metal ion is in a strong ligand field created by the N(6) donor set, and hence the Fe(II) in the [Fe(bpca)(2)] moiety is in a low-spin state. The terminal metal ions (M') are surrounded by O(6) donor sets with a moderate ligand field, which leads to the high-spin configuration of Fe(II). Three metal ions in all complexes are almost collinear, and metal-metal distances are ca. 5.5 A. The magnetic behavior of NiMn(2) and NiFe(2) shows a weak ferromagnetic interaction between the central Ni(II) ion and the terminal Mn(II) or Fe(II) ions. In these complexes, sigma-spin orbitals of the central Ni(II) ion and those of terminal metal ions have different symmetry about a 2-fold rotation axis through the Ni-N(amide)-M'(terminal) atoms, and this results in orthogonality between the neighboring sigma-spin orbitals and thus ferromagnetic interactions.  相似文献   

12.
Well-developed crystalline LiNi0.5Mn1.5O4 was prepared by solid-state reaction using Li2CO3, NiO and electrolytic MnO2 at high heating and cooling rate. X-ray diffraction (XRD) patterns and scanning electron microscopic (SEM) images showed that LiNi0.5Mn1.5O4 synthesized at 900 ℃ and 950 ℃ had cubic spinel structure with clearly defined shape. LiNi0.5Mn1.5O4 spinel phase decomposed at 1 000 ℃ accompanying with structural and morphological degradation. TG measurement revealed that the weight loss during heating process could be mostly gained in cooling process, and the upward tendency of weight loss during heating process decreased, while that of irreversible weight loss rapidly increased with the increase of temperature. LiNi0.5Mn1.5O4 powders prepared at 900 ℃ for 12 h delivered the maximum discharge capacity of 134 mAh·g-1 with good cyclic performance at 2/7 C. In addition, by adjusting the calcination time at 900 ℃, the capacity and cycling performance of LiNi0.5Mn1.5O4 were further enhanced.  相似文献   

13.
采用沉淀法制备了尖晶石型LiMn2O4和LiNiyCo0.1-yMn1.9O4 (y=0, 0.05, 0.1)正极材料. 应用FT-IR、XRD和SEM技术对不同掺杂样品的相结构与形貌进行了表征, 并用恒电流充放电测试和电化学阻抗技术研究了样品的电化学行为. FT-IR、XRD和SEM结果显示: 随着掺杂型LiNiyCo0.1-yMn1.9O4 样品中Ni含量的减少, 位于519 cm-1处的红外峰向高频方向移动; Ni、Co 或Ni/Co的掺杂降低了LiMn2O4的晶格参数; 掺杂型 LiNiyCo0.1-yMn1.9O4 样品具有更好的分散度和小的粒径. 电化学实验结果表明, 不同成分的掺杂导致电化学性能改善的原因不尽相同. 其中LiNi0.05Co0.05Mn1.9O4样品因其较低的电化学极化和较大的Li+扩散系数而具有较好的电化学性能.  相似文献   

14.
The alluaudite lithiated phases Li(0.5)Na(0.5)MnFe(2)(PO(4))(3) and Li(0.75)Na(0.25)MnFe(2)(PO(4))(3) were prepared via a sol-gel synthesis, leading to powders with spongy characteristics. The Rietveld refinement of the X-ray and neutron diffraction data coupled with ab initio calculations allowed us for the first time to accurately localize the lithium ions in the alluaudite structure. Actually, the lithium ions are localized in the A(1) and A(1)' sites of the tunnel. M?ssbauer measurements showed the presence of some Fe(2+) that decreased with increasing Li content. Neutron diffraction revealed the presence of a partial Mn/Fe exchange between the two transition metal sites that shows clearly that the oxidation state of the element is fixed by the type of occupied site. The electrochemical properties of the two phases were studied as positive electrodes in lithium batteries in the 4.5-1.5 V potential window, but they exhibit smaller electrochemical reversible capacity compared with the non-lithiated NaMnFe(2)(PO(4))(3). The possibility of Na(+)/Li(+) ion deintercalation from (Na,Li)MnFe(2)(PO(4))(3) was also investigated by DFT+U calculations.  相似文献   

15.
Novel Ni(II), Co(II), Zn(II) and Mn(II) complexes of coumarin-3-carboxylic acid (HCCA) were studied at experimental and theoretical levels. The complexes were characterised by elemental analyses, FT-IR, (1)H NMR, (13)C NMR and UV-Vis spectroscopy and by magnetic susceptibility measurements. The binding modes of the ligand and the spin states of the metal complexes were established by means of molecular modelling of the complexes studied and calculation of their IR, NMR and absorption spectra at DFT(TDDFT)/B3LYP level. The experimental and calculated data verified high spin Ni(II), Co(II) and Mn(II) complexes and a bidentate binding through the carboxylic oxygen atoms (CCA2). The model calculations predicted pseudo octahedral trans-[M(CCA2)(2)(H(2)O)(2)] structures for the Zn(II), Ni(II) and Co(II) complexes and a binuclear [Mn(2)(CCA2)(4)(H(2)O)(2)] structure. Experimental and calculated (1)H, (13)C NMR, IR and UV-Vis data were used to distinguish the two possible bidentate binding modes (CCA1 and CCA2) as well as mononuclear and binuclear structures of the metal complexes.  相似文献   

16.
共沸蒸馏法制备高性能LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2正极材料   总被引:1,自引:0,他引:1  
三元复合氧化物镍钴锰酸锂(LiNi1/3Co1/3Mn1/3O2)因兼有LiNiO2和LiCoO2的优点,被认为是最有可能取代LiCoO2的新型正极材料而受到广泛关注.本文采用一种改进的共沉淀方法合成了LiNi1/3Co1/3Mn1/3O2,以共沸蒸馏干燥前驱物.结果表明,共沸干燥法最终得到的产物比普通干燥法得到的产物具有更高的比容量、更好的循环性能以及更优的倍率性能.究其原因,可归结为共沸干燥得到的样品颗粒更小,且粒径分布更均匀,球形度高,比表面积大,促进了锂离子的扩散,因而提高了其电化学性能.  相似文献   

17.
使用草酸盐共沉淀法合成了LiNi0.5Mn0.5O2, 并研究了共沉淀时的pH条件对终产物的结构、形貌及电化学性能的影响. 采用X射线衍射(XRD)和扫描电镜(SEM)表征了在pH值为4.0、5.5、7.0和8.5时得到的共沉淀和终产物LiNi0.5Mn0.5O2的结构和形貌. 使用充放电实验研究了不同pH条件下得到的LiNi0.5Mn0.5O2的电化学性能. 结果表明, pH为7.0时, 合成的材料颗粒更小、分布最均匀, 材料具有良好的层状特征, 且材料中锂镍的混排程度最小. 电化学测试结果印证了pH为7.0时合成的材料具有更好的电化学性能, 在0.1C的倍率下, 材料的首次放电比容量达到了185 mAh·g-1, 在循环20周后, 放电比容量仍然保持在160 mAh·g-1. X射线光电子能谱(XPS)测试结果表明, pH为7.0时合成的LiNi0.5Mn0.5O2中Ni为+2价, Mn为+4价.  相似文献   

18.
Reactions of laser-ablated Mn, Fe, Co, and Ni atoms with H(2)O(2) and with H(2) + O(2) mixtures in excess argon give new absorptions in the O-H and M-O stretching regions, which are assigned to metal dihydroxide and trihydroxide molecules, M(OH)(2) and M(OH)(3). Isotopic substitutions (D(2)O(2), (18)O(2), (16,18)O(2), D(2)) confirmed the assignments and DFT calculations reproduced the experimental results. The O-H stretching frequencies decreased in the dihydroxides from Sc to Zn. Mulliken and natural charge distributions indicate significant electron transfer from metal d orbitals to OH ligands that decreases from Sc to Zn, suggesting that the early transition metal hydroxides are more ionic and that the later transition metal hydroxides are more covalent.  相似文献   

19.
通过共沉淀法与固相法相结合制备了掺锌的高稳定性Li(Ni1/3Co1/3Mn1/3)1-xZnxO2 (x=0, 0.02, 0.05)正极材料. 循环伏安(CV)曲线表明Zn掺杂使氧化峰与还原峰的电势差减小到0.09 V, 电化学阻抗谱(EIS)曲线表明Zn掺杂使电极的阻抗从266 Ω减小到102 Ω. Li+嵌入扩散系数从1.20×10-11 cm2·s-1增大到 2.54×10-11 cm2·s-1. Li(Ni1/3Co1/3Mn1/3)0.98Zn0.02O2正极材料以0.3C充放电在较高的截止电压(4.6 V)下比其他两种材料的电化学循环性能更稳定, 其第二周的放电比容量为176.2 mAh·g-1, 循环100周后容量几乎没衰减; 高温(55 °C)下充放电循环100周, 其放电比容量平均每周仅衰减0.20%, 远小于其他两种正极材料(LiNi1/3Co1/3Mn1/3O2平均每周衰减0.54%; Li(Ni1/3Co1/3Mn1/3)0.95Zn0.05O2平均每周衰减0.38%). Li(Ni1/3Co1/3Mn1/3)0.98Zn0.02O2正极材料以3C充放电时其放电比容量可达142 mAh·g-1, 高于其他两种正极材料. 电化学稳定性的提高归因于Zn掺杂后减小了电极的极化和阻抗, 增大了锂离子扩散系数.  相似文献   

20.
利用琥珀酸为鳌合剂的湿化学法成功合成了一系列锂离子电池正极材料LiNi1/3Mn1/3Co1/3O2,在合成过程中改变琥珀酸与金属离子摩尔比(R)并研究了这一参数对合成LiNi1/3Mn1/3Co1/3O2材料物理及电化学性质的影响.采用热重、X射线衍射、Rietveld精修、扫描电镜以及超导量子干涉仪对反应机理、材料的结构、形貌以及磁学性质进行了详细表征.得到最佳合成条件为R=1,此时LiNi1/3Mn1/3Co1/3O2的阳离子混排度最低.此外,通过Rietveld精修得到该材料阳离子混排度的结果与通过磁学方法得到的结果定量相符,如对于在R=1条件下合成的样品,Rietveld精修结果显示其阳离子混排度为1.85%,而超导量子干涉仪的测试结果为1.80%.当充放电区间为3.0-4.3V,电流密度为0.2C(1C=160mA·g-1)时,该样品的首次放电容量为161mAh·g-1,库仑效率为93.1%,经过50次循环后,容量保持率可达91.3%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号