首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Titania-based photocatalytic materials were prepared by sol-gel method using Fe3+ and polyethyleneglycol (PEG600) as additives. Thermogravimetry (TG), differential thermal analysis (DTA) and evolved gas analysis (EGA) with MS detection were used to elucidate processes that take place during heating of Fe3+ containing titania gels. The microstructure development of the Fe2O3/TiO2 gel samples with and without PEG600 admixtures was characterized by emanation thermal analysis (ETA) under in situ heating in air. A mathematical model was used for the evaluation of ETA results. Surface area and porosity measurements of the samples dried at 120°C and the samples preheated for 1 h to 300 and 500°C were compared. From the XRD measurements it was confirmed that the crystallization of anatase took place after thermal heating up to 600°C.  相似文献   

2.
Composite materials of Ag species embedded in SiO2 matrix were prepared by the sol-gel method. Two kinds of sample preparation were used. In the first one, the Ag aggregates were synthesized using two different reduction solutions, obtaining fine particles with a quasi-spherical shape and particles with a dendrite-like form, that were later added to the SiO2 matrix. In the second one, the Ag aggregates were formed in the SiO2 matrix from silver nitrate solutions. The prepared samples were annealed in air at different temperatures. By using uv-visible spectroscopy, X-ray diffraction, EDS, DTA, TGA and SEM, the structures of all the samples were studied. It was found that the embedded species and the heat treatments modify strongly the optical properties of the samples.  相似文献   

3.
Raman Spectra of Molecules Adsorbed on Ag Centers in Sol-Gel Matrices   总被引:1,自引:0,他引:1  
Silica monoliths and submicron spheres containing silver nanoparticles have been obtained using the sol gel technology. The Ag inclusions were synthesized via the counterdiffusion method. The silver-doped matrices were immersed in solutions of an organic dye (indocyanine green) enabling the solute molecules to interact with surface of the Ag-doped silica matrices. Raman spectra of free solutions of the organic molecules under investigation, the impregnated Ag-doped matrices and the impregnated Ag-free matrices have been measured. The impregnated silica matrices which did not contain silver nanoparticles were used as a reference. These experiments have been performed in order to establish if Raman signal enhancement could be obtained by adsorption of organic molecules on the surface of Ag inclusions in the sol-gel matrices analogously to the standard surface-enhanced Raman spectroscopy (SERS) method.  相似文献   

4.
Excitation of hexanuclear molybdenum complexes such as Mo6Cl12 and its derivatives in the ultraviolet results in a strongly red-shifted luminescence centered at 750nm. Since oxygen efficiently quenches the luminescence, these thermally stable inorganic complexes are candidate lumophores for real-time, high temperature optical fiber based sensing of oxygen. Sol-gel films containing the acetonitrile complex of Mo6Cl12 were deposited on quartz substrates by dip coating. After drying, the films were heated at 200C for 1 h. The luminescence lineshapes of films before and after heating were unchanged, indicating that heating did not adversely affect the cluster photophysics. Compared to solutions of the acetonitrile complex, quenching by oxygen was smaller in the as-prepared films, but heating at 200C for 1 h increased the quenching, apparently due to increased oxygen permeability resulting from the loss of water or other small molecules from the matrix. These results confirm the potential of hexanuclear molybdenum complexes such as Mo6Cl12⋅2CH3CN as the lumophores in fiber optic oxygen sensors that can operate up to 200C.  相似文献   

5.
SiO2 containing hybrid inorganic-organic nanocomposites prepared by the sol-gel method from silica nanoparticles, tetraethylorthosilicate and silanol terminated polydimethylsiloxane were used as precursors for obtaining porous SiO2/SiOC nanocomposites by pyrolysis in nitrogen atmosphere. A tetraethylorthosilicate sol and a triethoxysilane/methyldiethoxysilane sol, prepared by the sol-gel method and investigated by FT-IR, were used for a multiple sol infiltration-pyrolysis process in vacuum as precursors for a secondary SiO2 and SiOC glassy phase respectively. As the density and porosity of these materials depends on the starting precursor composition, the sol infiltration-pyrolysis process was carried out in order to decrease the porosity and increase the density of such materials. This process was monitored using the sample weight gain and by a non-destructive method for measuring of the E modulus on each cycle. The initial and final material was also characterized by means of Hg porosimetry and the three-point bend test, at room temperature, of the nanocomposites was also examined.  相似文献   

6.
FePО4/SiO2 supported catalysts with a different content of iron phosphate are prepared. The properties of the catalyst are changed by the introduction of alkali metal compounds (Na or Cs) on its surface. The samples obtained are characterized by X-ray diffraction, low-temperature nitrogen adsorption, temperatureprogrammed reduction by hydrogen, and temperature-programmed desorption of ammonia. The catalytic properties are investigated in the reaction of gas-phase propylene glycol oxidation. It is shown that the selectivity of methylglyoxal formation on the unmodified catalysts is determined by the state of the supported active component and by its reduction–oxidation ability under the action of a reaction mixture.  相似文献   

7.
Summary TG-DSC-MS (thermogravimetry-differential scanning calorimetry-mass spectrometry) coupling techniques were used to make a simultaneous characterizing study for the thermal decomposition process of the carbon nanotube (CNT)/SiO2precursor powders prepared by rapid sol-gel method. The thermal stability of the CNT and the SiO2pure gel were investigated by TG-DSC. The results showed that the oxidation of CNT began from 530 and combusted at about 678°C at the heating rate of 10°C min-1in air. Moreover, the faster the heating rate, the higher the temperature of CNT combustion. The appropriate calcinations temperature of the CNT/SiO2precursor powders should be held for 1 h at 500°C.  相似文献   

8.
TiO2–SiO2 composite nanoparticles were prepared by a sol–gel process. To obtain the assembly of TiO2–SiO2 composite nanoparticles, different molar ratios of Ti/Si were investigated. Polyurethane (PU)/(TiO2–SiO2) hybrid films were synthesized using the “grafting from” technique by incorporation of modified TiO2–SiO2 composite nanoparticles building blocks into PU matrix. Firstly, 3-aminopropyltriethysilane was employed to encapsulate TiO2–SiO2 composite nanoparticles’ surface. Secondly, the PU shell was tethered to the TiO2–SiO2 core surface via surface functionalized reaction. The particle size of TiO2–SiO2 composite sol was performed on dynamic light scattering, and the microstructure was characterized by X-ray diffraction and Fourier transform infrared. Thermogravimetric analysis and transmission electron microscopy (TEM) employed to study the hybrid films. The average particle size of the TiO2–SiO2 composite particles is about 38 nm when the molar ratio of Ti/Si reaches to1:1. The TEM image indicates that TiO2–SiO2 composite nanoparticles are well dispersed in the PU matrix.  相似文献   

9.
Summary A series of Al2O3-SnO2 catalysts with Al2O3 to SnO2 molar ratio of 1:1, 1:0.5, 1:0.2 and 1:0.1 were synthesized by sol-gel technique and characterized by thermal analysis and FTIR. In the case of binary gels - addition of tin component leads to better crosslinking than in pure alumina gel and as a result to a much uniform texture structure.  相似文献   

10.
The entrapment of organic dyes in inorganic solids offers several advantage for solid-state laser applications with respect to the use of liquid or polymer hosts. Among the various inorganic hosts, silica is preferred for its superior mechanical, thermal and optical properties. Organic dyes, such as Rhodamine 6G (Rh6G), can be immobilised in SiO2 both physically (materials of class I), and by covalent bonds (class II materials). In the past years Rh6G-SiO2 class I hybrids were prepared. In this work we propose, for the first time, a Rh6G-SiO2 class II hybrids. We describe the preparation of a suitable sol-gel Rh6G precursor verified by FT-IR analysis and report the characterization of the hybrid materials by means of thermal and porosimetric analysis and optical spectroscopy measurements. The precursor is thermally stable up to ∼250°C, and its optical characteristics (UV-VIS absorbance and photoluminescence, PL) do not change with respect to those of the pristine dye molecule. The PL spectra of the final hybrids show that they are promising candidates for applications in solid state dye lasers.  相似文献   

11.
As an asymmetric organic molecular crystal, p-N,N-dimethylaminobenzaldehyde (DAB) exhibits peculiar optical property. It was first grown by solution technique adopting slow evaporation method at room temperature using CCl4 as growth medium. The solubility of DAB increases with temperature. Good quality transparent crystals of p-N,N-dimethylaminobenzaldehyde were carefully collected and subjected various characterization studies such as UV, FTIR, 1H and 13CNMR spectral studies and thermal (TG-DTG) studies to determine the purity and application oriented properties of the grown crystals.  相似文献   

12.
The preparation of a carbon ceramic electrode modified with SnO2 (CCE/SnO2) using tin dibutyl diacetate as precursor was optimized by a 23 factorial design. The factors analyzed were catalyst (HCl), graphite/organic precursor ratio, and inorganic precursor (dibutyltin diacetate). The statistical treatment of the data showed that only the second-order interaction effect, catalyst × inorganic precursor, was significant at 95% confidence level, for the electrochemical response of the system. The obtained material was characterized by scanning electron microscopy (MEV), X-ray diffraction (XRD), RAMAN spectroscopy, XPS spectra, and voltammetric techniques. From the XPS spectra, it was confirmed the formation of the Si–O–Sn bond by the shift in the binding energy values referred to Sn 3d3/2 due to the interaction of Sn with SiOH species. The incorporation of SnO2 provided an increment of the electrode response for levofloxacin, with Ipa = 147.0 μA for the ECC and Ipa = 228.8 μA for ECC/SnO2, indicating that SnO2 when incorporated into the silica network enhances the electron transfer process. Under the optimized working conditions, the peak current increased linearly with the levofloxacin concentration in the range from 6.21×10?5 to 6.97×10?4 mol L?1 with quantification and detection limits of 3.80×10?5 mol L?1 (14.07 mg L?1) and 1.13×10?5 mol L?1 (4.18 mg L?1), respectively.  相似文献   

13.
With tetraethoxysilane as the organic precursor, gradient density aerogels were fabricated by three different methods: layer-by-layer gelation, sol-co-gelation and continuous formation technics. Through layer-by-layer method, a 5-layer graded density silica aerogel whose density ranges from 50 to 200 mg/cm3 was obtained, but it existed a dense skin between adjacent layers which could result in density mutation in the interface. In order to optimize its interface character, sol-co-gelation technique was created to improve the interdiffusion and smooth out the density mutation via a self-built device. Finally, on the base of the device and sol-co-gelation technics, a continuous formation process was developed to fabricate the completely gradient density silica aerogel. Optical microscope and X-ray phase contrast method were used to characterize the samples prepared by three different technics and comparatively research their interface feature.  相似文献   

14.
Electronic structure of (SiO2)3 clusters was calculated by the density functional method. Charge states were determined using various functionals, bond lengths and total energies of clusters were estimated.  相似文献   

15.
The photo-induced hydrophilicity of TiO2 films deposited on stainless steel substrates and silicon wafers using two different sol-gel routes has been investigated. The results indicate that crystalline titanium oxide films with excellent hydrophilic properties can be obtained on silicon wafer with both routes. XPS and XRD data reveal that films deposited on stainless steel exhibit crystallization features similar to those of films deposited on silicon wafers, and only differ by their oxidation degree owing to a TiO2 reduction process associated to a diffusion of iron ions during deposition of the acidic sol and/or high temperature post-treatment. Consequently, hydrophilic properties of films deposited on stainless steel are inhibited. The deposition of a SiOx barrier layer at the film/substrate interface allows preventing such a detrimental substrate influence. A low temperature deposition route of the TiO2 film associated to the presence of a barrier layer yields best results in preventing iron contamination of the films.  相似文献   

16.
In this study the formation of chromium substituted YBa2Cu4O8 (Y-124) superconductors has been investigated by TG/DTA measurements. The YBa2(Cu1−xCrx)4O8 ceramics with nominal compositions of x=0.01, 0.03, 0.05, 0.10 and 0.20 have been prepared by an aqueous sol-gel method using aqueous mixtures of the corresponding metal acetates and nitrates. Homogeneous precursor gels were obtained by complexing metal ions with tartaric acid. To assist the interpretation of the results obtained the synthesis products were additionally characterized by X-ray powder diffraction (XRD) and resistivity measurements. It was determined that doping the YBa2Cu4O8 phase with chromium has a strong effect on the phase purity and superconducting properties of the synthesis products.  相似文献   

17.
The Ni/ZrO2/SiO2 aerogels catalysts were synthesized via three different routes: (i) impregnation ZrO2–SiO2 composite aerogels with a aqueous solution of Ni(NO3)2, (ii) impregnation SiO2 aerogels with a mixed aqueous solution of Ni(NO3)2 and ZrO(NO3)2 · 2H2O, (iii) one-pot sol–gel procedure from precursors Ni(NO3)2/ZrO(NO3)2 · 2H2O/Si(OC2H5)4. These catalysts were characterized by X-ray diffraction (XRD), temperature-programmed reduction (TPR), ammonia temperature-programmed desorption (NH3-TPD), N2 adsorption–desorption isotherms and Fourier transform infrared (FT-IR). The Liquid-phase hydrogenation of maleic anhydride (MA) was performed over these catalysts. The results revealed that the different preparation routes result in a difference between the obtained samples, concerning the crystal structure and composition, surface acidity, mixed level of each component, texture, and catalytic selectivity.  相似文献   

18.
Since the layered double hydroxides (abbreviatedas LDHs) were firstly reported to be used as precur-sors of new catalytic materials by S. Miyata[1] in 1971,their preparations, ion-exchanges with the balancinginterlayer anions, structure characteristics an…  相似文献   

19.
Calculated values of viscosity, thermal and electrical conductivities of plasma formed in mixtures of silver (Ag) and silica (SiO2) are presented. The calculations, which assume local thermodynamic equilibrium, are performed for three pressures (1, 10 and 30 atm) in the temperature range from 4,000 to 30,000 K. All the data for the potential interactions and the necessary formulations to obtain values of transport coefficients are given in details. For atmospheric pressure, five mixtures (100% Ag, 75% Ag and 25% SiO2, 50% Ag and 50% SiO2, 25% Ag and 75% SiO2, 100% SiO2) in weight percentage are studied. In order to analyse the pressure influence on the transport coefficients, three samples of Ag–SiO2 mixtures (100% Ag, 50% Ag and 50% SiO2, 100% SiO2) in weight percentage are discussed for pressures of 1, 10 and 30 atm. In addition for the test case of oxygen plasma, we compare the computation code results with values obtained by other authors: discrepancies are found and explained.   相似文献   

20.
Within the framework of the density functional theory (DFT), the electronic structure of monooxodioxovanadium functional groups in tetrahedral coordination, which model the active centers (ACs) of fine supported catalysts V2O5/SiO2 and V2O5/TiO2, has been analyzed. The optimal structures of three ACs as possible models of monomeric and polymeric oxovanadium forms on the carriers with low vanadium content were determined. The modified DFT method involving the time dependence of Kohn-Sham equation (TDDFT) was used for the adopted AC models to calculate the energies of the excited states, and optical spectra of the absorption in 25000–60000 cm?1 region were reconstructed on their base. The spectrum in this region is due to O → V charge transfer. The features of electronic spectra with the charge transfer for V2O5/SiO2 and V2O5/TiO2 catalysts and the vibrational spectra of three AC models corresponding to the monomeric and dimeric oxovanadium forms of the supported catalysts V2O5/SiO2 and V2O5/TiO2 were defined. The detailed interpretation of normal vibration frequencies is given. The frequencies typical of the monomeric and dimeric oxovanadium forms on the carrier surface were identified.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号