首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
When concentrated forces are applied at any points of the outer region of an ellipse in an infinite plate, the complex potentials are determined using the conformal mapping method and Cauchy's integral formula. And then, based on the superposition principle, the analytical solutions for stress around an elliptical hole in an infinite plate subjected to a uniform far-field stress and concentrated forces, are obtained. Tangential stress concentration will occur on the hole boundary when only far-field uniform loads are applied. When concentrated forces are applied in the reversed directions of the uniform loads, tangential stress concentration on the hole boundary can be released significantly. In order to minimize the tangential stress concentration, we need to determine the optimum positions and values of the concentrated forces. Three different optimization methods are applied to achieve this aim. The results show that the tangential stress can be released significantly when the optimized concentrated forces are applied.  相似文献   

2.
Thermal stress calculations for an isotropic medium are presented. The calculations simulate a continuous wave laser beam pumping a laser crystal. Two different crystal shapes, a rod and a rectangular slab, are shown to give significantly different stress distributions. The calculation is based on an experiment where an argon laser was used to pump a neodymium: phosphate glass sample and photographs of stress fractures are shown.  相似文献   

3.
In this paper, a symmetric boundary value problem of the stress analysis for an equilibrium of layer with end-supports covered by diaphragms and weakened by several loaded stress raisers is investigated. The given boundary value problem is reduced to an infinite system of singular integral equations of the second kind. The expressions for stress components in an elastic layer weakened by stress raisers are presented. Based on the developed analytical procedure, extensive numerical investigations have been conducted. The results of these investigations are illustrated graphically exposing some novel qualitative and quantitative knowledge about stress concentration in the layer depending on some geometric parameters of stress raisers and Poisson’s ratio of a layer material.  相似文献   

4.
A numerical method using a path-independent H-integral based on the conservation integral was developed to analyze the singular stress field of a three-dimensional interfacial corner between anisotropic bimaterials under thermal stress. In the present method, the shape of the corner front is smooth. According to the theory of linear elasticity, asymptotic stress near the tip of a sharp interfacial corner is generally singular as a result of a mismatch of the materials’ elastic constants. The eigenvalues and the eigenfunctions are obtained using the Williams eigenfunction method, which depends on the anisotropic materials’ properties and the geometry of an interfacial corner. The order of the singularity related to the eigenvalue is real, complex or power-logarithmic. The amplitudes of the singular stress terms can be calculated using the H-integral. The stress and displacement around an interfacial corner for the H-integral are obtained using finite element analysis. In this study, a proposed definition of the stress intensity factors of an interfacial corner, which includes those of an interfacial crack and a homogeneous crack, is used to evaluate the singular stress fields. Asymptotic solutions of stress and displacement around an interfacial corner front are uniquely obtained using these stress intensity factors. To prove the accuracy of the present method, several different kinds of examples are shown such as interfacial corners or cracks in three-dimensional structures.  相似文献   

5.
The problems of singularity formation and hydrostatic stress created by an inhomogeneity with eigenstrain in an incompressible isotropic hyperelastic material are considered. For both a spherical ball and a cylindrical bar with a radially symmetric distribution of finite possibly anisotropic eigenstrains, we show that the anisotropy of these eigenstrains at the center (the center of the sphere or the axis of the cylinder) controls the stress singularity. If they are equal at the center no stress singularity develops but if they are not equal then stress always develops a logarithmic singularity. In both cases, the energy density and strains are everywhere finite. As a related problem, we consider annular inclusions for which the eigenstrains vanish in a core around the center. We show that even for an anisotropic distribution of eigenstrains, the stress inside the core is always hydrostatic. We show how these general results are connected to recent claims on similar problems in the limit of small eigenstrains.  相似文献   

6.
We discuss the possible shapes and stress distributions of an inextensible membrane acted on by a gravitational force. It is shown that there are smooth shapes which cannot be an equilibrium solution under gravity for any stress distribution. In addition there are infinitely many shapes which are equilibrium solutions under gravity and for which the stress distribution is unique. Finally, there are infinitely many solution surfaces – each consisting of straight line generators parallel to the direction of gravity. These solutions are possible under infinitely many different stress distributions. In several cases we will solve the equations explicitly to find actual shapes and stress distributions. Mathematics Subject Classifications (2000) 74.  相似文献   

7.
In the present paper, a method proposed by one of the authors is extended to a class of skew-symmetric elastic problems for the stress analysis of a layer supported by sliding fixed supports and weakened by several stress raisers. The corresponding boundary value problem is reduced to an infinite system of one-dimensional singular integral equations of the second kind. The expressions for the stress components in an elastic layer weakened by stress raisers are presented. Based on the developed analytical algorithm, extensive numerical investigations have been conducted. The results of these investigations are illustrated graphically exposing some novel qualitative and quantitative knowledge about stress concentration in the layer depending on some geometric parameters of stress raisers and Poisson’s ratio of a layer material.  相似文献   

8.
A theory of primary and secondary creep deformation in metals is presented, which is based upon the concept of tensor internal state variables and the principles of continuum mechanics and thermodynamics. The theory is able to account for both multi-axial and time-dependent stress and strain states. The wellknown concepts of elastic, anelastic and plastic strains follow naturally from the theory. Homogeneous stress states are considered in detail and a simplified theory is derived by linearizing with respect to the internal state variables. It is demonstrated that the model can be developed in such a way that multi-axial constant-stress creep data can be presented as a single relationship between an equivalent stress and an equivalent strain. It is shown how the theory may be used to describe the multi-axial deformation of metals which are subjected to constant stress states. The multi-axial strain response to a general cyclic stress state is calculated. For uni-axial stress states, square-wave loading and a thermal fatigue stress cycle are analysed.  相似文献   

9.
Fatigue criterion based on the maximum normal stress acting on a fracture plane with random triaxial stress state is related to an equivalent stress state. Probability density function of the equivalent stress state and its associated parameters are obtained. Planes on which the maximum values of the equivalent stress variance occur are assumed to coincide with the sites of fatigue fracture.  相似文献   

10.
A general, approximate solution is presented for an edge dislocation interacting with an inhomogeneity of arbitrary shape under combined dislocation and applied stress fields. The solution shows that the contributions of the dislocation stress field and the applied stress field to the interaction follow a simple superposition principle. The dislocation stress field has a short range effect, while the applied stress field has a long range effect. As special cases, explicit solutions for some common inhomogeneity shapes are obtained for the interaction induced by the applied stress field.  相似文献   

11.
The stress singularity that occurs at a vertex in a joint with a slanted side surface is investigated. The orders of stress singularity at a vertex and at a point on stress singularity lines for various material properties are determined using eigenanalysis. The stress distribution on an interface and the intensity of stress singularity at the vertex are investigated using BEM. It is shown that the order of stress singularity at the vertex in the joints can be reduced by slanting a side surface so as to decrease the angle between the interface and the side surface. The results of BEM analysis reveal that the distribution of stress on the interface is influenced by the slanted side surface. Finally, the 3D intensities of the singularity for stress components which are continuous at the interface are newly defined and determined for various material combinations.  相似文献   

12.
Although a lot of interface crack problems were previously treated, few solutions are available under arbitrary crack lengths and material combinations. In this paper the stress intensity factors of an edge interface crack in a bonded strip are considered under tension with varying the crack length and material combinations systematically. Then, the limiting solutions are provided for an edge interface crack in a bonded semi-infinite plate under arbitrary material combinations. In order to calculate the stress intensity factors accurately, exact solutions in an infinite bonded plate are also considered to produce proportional singular stress fields in the analysis of FEM by superposing specific tensile and shear stresses at infinity. The details of this new numerical solution are described with clarifying the effect of the element size on the stress intensity factor. It is found that for the edge interface crack the normalized stress intensity factors are not always finite depending upon Dunders’ parameters. This behavior can be explained from the condition of the singular stress at the end of bonded strip. Convenient formulas are also given by fitting the computed results.  相似文献   

13.
By using the complex variable method and conformal mapping,the diffraction of flexu-ral waves and dynamic stress concentrations in thick plates with a cavity have been studied.A generalsolution of the stress problem of the thick plate satisfying the boundary conditions on the contour of anarbitrary cavity is obtained.By employing the orthogonal function expansion technique,the dynamicstress problem can be reduced to the solution of an infinite algebraic equation series.As an example,the numerical results for the dynamic stress concentration factor in thick plates with a circular,ellipticcavity are graphically presented.The numerical results are discussed.  相似文献   

14.
The transient thermal stress problem of an inner-surface-coated hollow cylinder with multiple pre-existing surface cracks contained in the coating is considered. The transient temperature, induced thermal stress, and the crack tip stress intensity factor (SIF) are calculated for the cylinder via finite element method (FEM), which is exposed to convective cooling from the inner surface. As an example, the material pair of a chromium coating and an underlying steel substrate 30CrNi2MoVA is particularly evaluated. Numerical results are obtained for the stress intensity factors as a function of normalized quantities such as time, crack length, convection severity, material constants and crack spacing.  相似文献   

15.
An analytical model is presented for determining surface residual stress using continuous indentation. The elastic residual stress is assumed to have no influence on contact area or hardness and to be uniform over a volume that is several times larger than the indentation mark. A step-by-step analysis for the residual-stress-induced load difference at a given depth is outlined here and such concepts as stress interaction, stress-sensitive contact morphology, and reversible contact recoveries during a stress relaxation are described. Finally, the proposed method is applied to the interpretation of the continuous indentation results obtained from an SS400 steel beam in which controlled bending stresses are generated. The stress estimated, however, showed a high scatter due to plastic pile-up deformation. When the optically measured contact area is used as an alternative of the contact area calculated from the unloading curve, the re-evaluated stress agrees well with the already known applied stress.  相似文献   

16.
In this paper, the problem of a crack perpendicular to and terminating at an interface in bimaterial structure with finite boundaries is investigated. The dislocation simulation method and boundary collocation approach are used to derive and solve the basic equations. Two kinds of loading form are considered when the crack lies in a softer or a stiffer material, one is an ideal loading and the other one fits to the practical experiment loading. Complete solutions of the stress field including the T stress are obtained as well as the stress intensity factors. Influences of T stress on the stress field ahead of the crack tip are studied. Finite boundary effects on the stress intensity factors are emphasized. Comparisons with the problem presented by Chen et al. (Int. J. Solids and Structure, 2003, 40, 2731–2755) are discussed also.The project supported by the National Natural Science Foundation of China (10202023 and 10272103), and the Key Project of CAS (KJCX2-SW-L2).  相似文献   

17.
For bonded dissimilar materials, the free-edge stress singularity usually prevails near the intersection of the free-surface and the interface. When two materials are bonded by using an adhesive, an interlayer develops between the two bonded materials. When a ceramic and a metal are bonded, the residual stress develops because of difference in the coefficient of thermal expansion. An interlayer may be inserted between the two materials to defuse the residual stress. Stress field near the intersection of the interface and free-surface in the presence of the interlayer is then very important for evaluating the strength of bonded dissimilar materials.In this study, stress distributions on the interface of bonded dissimilar materials with an interlayer were calculated by using the boundary element method to investigate the effect of the interlayer on the stress distribution. The relation between the free-edge singular stress fields of bonded dissimilar materials with and without an interlayer was investigated numerically. It was found that the influence of the interlayer on the stress distributions was confined within a small area of the order of interlayer thickness around the intersection of the interface and the free-surface when the interlayer was very thin. The stress distribution near the intersection of the interface and the free-surface was controlled by the free-edge stress singularity of the bonded dissimilar materials without the interlayer. In this case, the interlayer can be called free-edge singularity-controlled interlayer. If a stress distribution on the interface is known for one thickness of an interlayer h, stress distributions on the interface for other values of h can be estimated.  相似文献   

18.
Experimental studies of the surface stress of solids typically work with surfaces that are not perfectly planar. The experiment then probes an effectively averaged surface stress. The evolution of the surface morphology, for instance during film growth or reconstruction, is also affected by the surface stress acting on a corrugated surface. Here, we analyze the mechanics of rough surfaces in a continuum framework. In a generalization of the approach of Weissmüller and Duan [2008. Phys. Rev. Lett. 101, 146102] to solids with anisotropic elasticity, anisotropic surface stress and anisotropic roughness, we focus on the effectively averaged surface stress that determines the mean compensating stress in the bulk. Important concepts are the projection of out-of-plane stresses at inclined segments of a surface into the macroscopic surface plane, and the transverse coupling between the out-of-plane and in-plane components of the surface-induced stress in the bulk. We show that the coupling of the surface stress at a corrugated surface into a planar substrate depends on the geometry of the corrugation exclusively through the surface orientation distribution function. Special geometries are inspected with an eye on illustrating the impact of anisotropic elasticity as well as geometric anisotropy, which both feed into the anisotropy of the effective surface stress.  相似文献   

19.
On the basis of the nonlinear theory of elasticity, the general constitutive equation for an isotropic hyperelastic solid in the presence of initial stress is derived. This derivation involves invariants that couple the deformation with the initial stress and in general, for a compressible material, it requires 10 invariants, reducing to 9 for an incompressible material. Expressions for the Cauchy and nominal stress tensors in a finitely deformed configuration are given along with the elasticity tensor and its specialization to the initially stressed undeformed configuration. The equations governing infinitesimal motions superimposed on a finite deformation are then used to study the combined effects of initial stress and finite deformation on the propagation of homogeneous plane waves in a homogeneously deformed and initially stressed solid of infinite extent. This general framework allows for various different specializations, which make contact with earlier works. In particular, connections with results derived within Biot's classical theory are highlighted. The general results are also specialized to the case of a small initial stress and a small pre-deformation, i.e. to the evaluation of the acoustoelastic effect. Here the formulas derived for the wave speeds cover the case of a second-order elastic solid without initial stress and subject to a uniaxial tension [Hughes and Kelly, Phys. Rev. 92 (1953) 1145] and are consistent with results for an undeformed solid subject to a residual stress [Man and Lu, J. Elasticity 17 (1987) 159]. These formulas provide a basis for acoustic evaluation of the second- and third-order elasticity constants and of the residual stresses. The results are further illustrated in respect of a prototype model of nonlinear elasticity with initial stress, allowing for both finite deformation and nonlinear dependence on the initial stress.  相似文献   

20.
A method for the stress separation of interferometrically measured isopachics using an Airy stress function is proposed in this study. A Poisson equation that represents the relationship between the sum of principal stresses and an Airy stress function is solved using a finite element method. The Dirichlet boundary condition for solving the Poisson equation is determined by the approximation of an assumed Airy stress function along the boundary of the model. Therefore, the distribution of the Airy stress function is obtained from the measured isopachic contours. Then, the stresses are obtained from the computed Airy stress function. The effectiveness of the proposed method is validated by applying the proposed method to the isopachic contours in a perforated plate obtained by Mach-Zehnder interferometry. Results indicate that stress components around a hole in a plate can be obtained from isopachics by the proposed method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号