首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Near infrared (NIR) irradiation can penetrate up to 10 cm deep into tissues and be remotely applied with high spatial and temporal precision. Despite its potential for various medical and biological applications, there is a dearth of biomaterials that are responsive at this wavelength region. Herein we report a polymeric material that is able to disassemble in response to biologically benign levels of NIR irradiation upon two-photon absorption. The design relies on the photolysis of the multiple pendant 4-bromo7-hydroxycoumarin protecting groups to trigger a cascade of cyclization and rearrangement reactions leading to the degradation of the polymer backbone. The new material undergoes a 50% Mw loss after 25 sec of ultraviolet (UV) irradiation by single photon absorption and 21 min of NIR irradiation via two-photon absorption. Most importantly, even NIR irradiation at biologically benign laser power is sufficient to cause significant polymer disassembly. Furthermore, this material is well tolerated by cells both before and after degradation. These results demonstrate for the first time a NIR sensitive material with potential to be used for in vivo applications.  相似文献   

2.
Gold nanorods were attached to the gene of enhanced green fluorescence protein (EGFP) for the remote control of gene expression in living cells. The UV-vis spectroscopy, electrophoresis, and transmission electron microscopy (TEM) were used to study the optical and structural properties of the EGFP DNA and gold nanorod (EGFP-GNR) conjugates before and after femto-second near-infrared (NIR) laser irradiation. Upon NIR irradiation, the gold nanorods of EGFP-GNR conjugates underwent shape transformation that resulted in the release of EGFP DNA. When EGFP-GNR conjugates were delivered to cultured HeLa cells, induced GFP expression was specifically observed in cells that were locally exposed to NIR irradiation. Our results demonstrate the feasibility of using gold nanorods and NIR irradiation as means of remote control of gene expression in specific cells. This approach has potential applications in biological and medical studies.  相似文献   

3.
This paper reports the synthesis and characterization of surface-enhanced Raman scattering (SERS) label-tagged gold nanostars, coated with a silica shell containing methylene blue photosensitizing drug for singlet-oxygen generation. To our knowledge, this is the first report of nanocomposites possessing a combined capability for SERS detection and singlet-oxygen generation for photodynamic therapy. The gold nanostars were tuned for maximal absorption in the near-infrared (NIR) spectral region and tagged with a NIR dye for surface-enhanced resonance Raman scattering (SERRS). Silica coating was used to encapsulate the photosensitizer methylene blue in a shell around the nanoparticles. Upon 785 nm excitation, SERS from the Raman dye is observed, while excitation at 633 nm shows fluorescence from methylene blue. Methylene-blue-encapsulated nanoparticles show a significant increase in singlet-oxygen generation as compared to nanoparticles synthesized without methylene blue. This increased singlet-oxygen generation shows a cytotoxic effect on BT549 breast cancer cells upon laser irradiation. The combination of SERS detection (diagnostic) and singlet-oxygen generation (therapeutic) into a single platform provides a potential theranostic agent.  相似文献   

4.
Spontaneous and near-infrared/infrared (NIR/IR)-induced interconversions between two amino-hydroxy conformers of monomeric cytosine have been investigated for the compound isolated in a low-temperature argon matrix. Combined use of a laser source (which provides narrowband NIR radiation) and a broadband NIR/IR source of excitation light allowed a detailed investigation of mutual conversions of the two conformers in question. The experiments carried out within the current work demonstrated that upon broadband NIR/IR irradiation (with the IR source of FTIR spectrometer) the population ratio of the two amino-hydroxy conformers changes towards a ratio corresponding to a photostationary state. Evolution of the conformer population ratio towards the photostationary ratio occurred independent of the initial ratio of conformers, which could be prepared by a population shift (in favor of one of the forms) induced by narrowband NIR excitation. Moreover, spontaneous tunneling conversion of the higher-energy conformer into a lower-energy form was observed for cytosine isolated in a low-temperature argon matrix kept in the dark. This process is slow and occurs on a time scale of days. The tunneling process, studied for matrix-isolated cytosine, clearly follows a dispersive type of kinetics rather than the classical monoexponential kinetics.  相似文献   

5.
Human erythrocytes suspended in an isotonic Na-phosphate buffer, pH 7.4 (hematocrit of 2%), were irradiated with γ-rays with single and split doses under air or N2O in order to determine the physicochemical changes caused by the dose inducing an increase in resistance to radiation-induced hemolysis.The obtained results showed that under the applied irradiation conditions, the dose of 0.4 kGy induced changes in erythrocytes, which were responsible for temporary resistance of erythrocytes to hemolysis. We concluded that the observed resistance is caused mainly by the structural changes in proteins.  相似文献   

6.
We developed nanosized, reduced graphene oxide (nano-rGO) sheets with high near-infrared (NIR) light absorbance and biocompatibility for potential photothermal therapy. The single-layered nano-rGO sheets were ~20 nm in average lateral dimension, functionalized noncovalently by amphiphilic PEGylated polymer chains to render stability in biological solutions and exhibited 6-fold higher NIR absorption than nonreduced, covalently PEGylated nano-GO. Attaching a targeting peptide bearing the Arg-Gly-Asp (RGD) motif to nano-rGO afforded selective cellular uptake in U87MG cancer cells and highly effective photoablation of cells in vitro. In the absence of any NIR irradiation, nano-rGO exhibited little toxicity in vitro at concentrations well above the doses needed for photothermal heating. This work established nano-rGO as a novel photothermal agent due to its small size, high photothermal efficiency, and low cost as compared to other NIR photothermal agents including gold nanomaterials and carbon nanotubes.  相似文献   

7.
采用无模板法制备了金纳米花, 其形状与粒径大小可以通过改变反应温度和还原剂抗坏血酸的用量来调控; 然后, 通过多巴胺的表面原位聚合反应制备了聚多巴胺修饰的金纳米花, 以提高其在近红外区的吸收能力及生物相容性. 采用透射电子显微镜(TEM)、 紫外-可见吸收光谱(UV-Vis)和纳米粒度/Zeta电位仪等对金纳米花和聚多巴胺修饰金纳米花的形态、 粒径和光学特性进行了表征; 通过傅里叶变换红外吸收光谱(FTIR)分析证明聚多巴胺修饰成功; X射线衍射(XRD)分析结果表明, 聚多巴胺修饰前后金纳米花的晶体结构未变; 最后, 采用噻唑蓝(MTT)法体外评价了聚多巴胺修饰金纳米花的细胞毒性. 研究结果表明, 反应温度越低, 金纳米花表面分支结构越丰富, 以0 ℃为最佳反应温度; 还原剂抗血酸的用量越高, 金纳米花粒径越小; 金纳米花粒径在60~100 nm范围内可调, 最大吸收波长为575~650 nm. 经聚多巴胺修饰后, 金纳米花的最大吸收波长发生了显著红移(>80 nm), 近红外区的吸收范围显著扩大. 通过调控多巴胺溶液浓度, 可将金纳米花表面聚多巴胺层的厚度控制在8~14 nm. 在808 nm激光辐照下, 聚多巴胺修饰金纳米花溶液可迅速升温至57 ℃. 此外, 细胞实验结果表明, 聚多巴胺修饰后金纳米花的细胞毒性更低. 用其对HeLa肿瘤细胞进行光热治疗后, 细胞存活率仅为10%. 因此, 聚多巴胺修饰金纳米花作为光热试剂在肿瘤治疗领域具有潜在的应用前景.  相似文献   

8.
单云  张红琳  张凤 《应用化学》2015,32(7):837-842
分别采用改进Hummers方法和水热还原法制备了氧化石墨烯(GO)和还原氧化石墨烯(RGO)。 GO和RGO经透射电子显微镜(TEM)、紫外-可见吸收光谱(UV-Vis)、红外光谱(IR)、荧光发射和激发光谱(PL、PLE)等技术手段进行了表征。 荧光发射光谱显示,氧化石墨烯(GO)在可见光的激发下可以得到波长在600~800 nm范围内的宽谱近红外荧光。 通过比较氧化石墨烯水热还原前后的光谱变化,发现氧化石墨烯近红外荧光起源于氧化石墨烯的表面含氧基团,如C=O、COOH。 近红外荧光穿透性好、对生物组织损坏小,非常适合于生物成像,预示着氧化石墨烯在生物成像方面的应用潜力。  相似文献   

9.
Abstract— Erythrocytes from patients with erythropoietic protoporphyria contain large amounts of protoporphyrin bound to (hemo)globin. Irradiation of these cells causes a shift in fluorescence emission maximum and a decreased fluorescence intensity which is consistent with transfer of protoporphyrin from (hemo)globin to the cell membrane. When the erythrocytes were irradiated intermittently, nearly 70% of the protoporphyrin was released and the hemolysis was less than 3%. Giving the total light dose as a single pulse, resulted in 84% protoporphyrin release and 16% hemolysis.
In vivo the erythrocytes obtain small, repetitive light doses when circulating in the dermal capillaries. We suggest the possibility that in patients with erythropoietic protoporphyria these small light pulses could be sufficient to photodamage the binding place of protoporphyrin on (hemo)globin. In the dark, protoporphyrin can then move from (hemo)globin through the cell membrane and bind to albumin in the serum. Our findings indicate that if protoporphyrin is not present in the cell membrane during irradiation, no photohemolysis will occur. This may explain why patients with erythropoietic protoporphyria have no abnormal hemolysis. The effect of intermittent light pulses may also contribute to the understanding of the protoporphyrin release from erythrocytes in patients with erythropoietic protoporphyria.  相似文献   

10.
A new class of near‐infrared (NIR)‐absorptive (>900 nm) photosensitizer based on a phenothiazinium scaffold is reported. The stable solid compound, o‐DAP, the oxidative form of 3,7‐bis(4‐methylaminophenyl)‐10H‐phenothiazine, can generate reactive oxygen species (ROS, singlet oxygen and superoxide) under appropriate irradiation conditions. After biologically evaluating the intracellular uptake, localization, and phototoxicity of this compound, it was concluded that o‐DAP is photostable and a potential selective photodynamic therapy (PDT) agent under either NIR or white light irradiation because its photodamage is more efficient in cancer cells than in normal cells and is without significant dark toxicity. This is very rare for photosensitizers in PDT applications.  相似文献   

11.
Abstract— Relative potency of 10 fluorescein derivatives as sensitizers of delayed photohemolysis of human erythrocytes has been assessed. Dilute suspensions of washed cells were illuminated in the presence of sensitizer at different concentrations for 1 h and analyzed for percent hemolysis following 23 h of dark incubation. Plots of percent hemolysis versus concentration showed a steep dependence on concentration for all sensitizers. Additional measurements of octanol/water partition coefficients, photon absorption in octanol and in saline and photobleach rates were made. After correction for absorption cross section, the effectiveness values ranged over more than three orders of magnitude with fluorescein being the least potent and rose bengal the most. A reasonable prediction of potency is obtained by taking the product of partition coefficient, relative absorption in octanol versus water and molecular weight of the substituents added to the fluorescein skeleton. The results suggest that the influence of halogen substitution on sensitizing potency is exerted by four factors; (1) distribution of sensitizer into a low polarity region of the cell membrane, (2) absorption efficiency in a low polarity region, (3) triplet quantum yield, and (4) photobleach rate.  相似文献   

12.
A trehalose cinnamoyl ester (TC) was synthesized from trehalose and cinnamoyl chloride in dimethylformamide (DMF) in the presence of triethylamine and 4‐(N,N‐dimethylamino)pyridine. The product was characterized by 1H NMR spectroscopy to reveal that the reaction proceeded. Two different types of TCs were synthesized by changing the feed ratio of cinnamoyl chloride to trehalose. When the feed ratio of cinnamoyl chloride to trehalose was 8 (TC8), the degree of substitution (DS) was 8.0, while it was 4.2 when the feed ratio was 4 (TC4). Photocuring was confirmed by observing changes in UV absorption spectrum and FT Infrared (IR) spectrum. After 5 min of UV irradiation, solubility in chloroform significantly decreased. A transparent thin coating film of TC was easily prepared by casting from a chloroform solution on a Petri dish and UV irradiation was carried out over a simple photomask. After TC within the non‐irradiated region was removed by flash soaking with chloroform, the shape of the photomask appeared. A scanning electron microscope (SEM) measurement revealed that the surface of the photocured coating film was smooth and that the edge of the photocured TC had a characteristic feature. Biodegradation of the photocured TC and non‐irradiated TC was examined by the biochemical oxygen demand (BOD) method using activated sludge. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

13.
Currently, the combination of photothermal therapy (PTT) and photodynamic therapy (PDT) has emerged as a powerful technique for cancer treatment. However, most examples of combined PTT and PDT reported use multi-component nanocomposites under excitation of separate wavelength, resulting in complex treatment process. In this work, a novel theranostic nanoplatform (SiNcOH-DSPE-PEG(NH2) NPs) has been successfully developed by coating silicon 2,3-naphthalocyanine dihydroxide (SiNcOH) with DSPE-PEG and DSPE-PEG-NH2 for photoacoustic (PA) imaging-guided PTT and PDT tumor ablation for the first time. The as-prepared single-agent SiNcOH-DSPE-PEG(NH2) NPs not only have good water solubility and biocompatibility, but also exhibit high photothermal conversion efficiency and singlet oxygen generation capability upon 808 nm NIR laser irradiation. In addition, owing to their high absorption at NIR region, the SiNcOH-DSPE-PEG(NH2) NPs can also be employed as an effective diagnostic nanoagent for photoacoustic (PA) imaging. In vitro and in vivo experimental results clearly indicated that the simultaneously combined PTT and PDT under the guidance of PA imaging with single NIR laser excitation can effectively kill cancer cells or eradicate tumor tissues. Taking facile synthesis and high efficiency in cancer treatment by SiNcOH-DSPE-PEG(NH2) NPs into consideration, our study provides a promising strategy to realize molecular imaging-guided combination therapy.  相似文献   

14.
Heat induces several successive events in erythrocyte membrane; the denaturation of spectrin at about 50°C, thermoporation at 62°C and denaturation of the anion channel at 67°C. The heat denaturation of major membrane proteins, spectrin and the anion channel, is not needed for the thermoporation which is involved in thermohemolysis. This study reports about the surface and shape changes which are specific for thermoporated membranes with spectrin and anion channel preserved intact. Thermoporation was produced exposing human erythrocytes to 39.5°C for 3 min in isotonic medium containing 18% (v/v) ethanol as membrane fluidizer and sucrose as osmotic protectant which prevents hemolysis (Ivanov, J. Therm. Biol. 1996). The control cells were processed similarly except that they were incubated at 23°C, thus avoiding thermoporation. In control and porated membranes the overall structure of spectrin and the anion channel was retained inasmuch as their enthalpies and denaturation temperatures were microcalorimetrically found preserved. Nevertheless, irregular shape, grainy surface and asymmetric spicules were apparent in porated cells through scanning electron microscopy. A decrease in the number of binding sites for Alcian blue and an increased binding of eosine was established in the membranes of porated cells. After poration the hexane/aqueous partition coefficient Kd of cells increased from 5 to about 220 and the electrophoretic mobility of cells decreased by about 25% indicating marked increase in cell surface hydrophobicity and a decrease in surface charge, respectively. In addition, adhesivity to hydrophobic interfaces and aggregability in low ionic media strongly increased after poration. In contrast to intact and control cells, the porated ones (all prefixed with 0.2% glutaraldehyde) made molecular contacts with inclined hydrophobic interfaces at low (5 mM NaCl) but not at high (150 mM NaCl) ionic media. Thus, the microtopological shape changes and exposure of new hydrophobic and charge groups over the outer cell surface, without major thermal unfolding, possibly indicates an irreversible redistribution of membrane material and disturbed lipid–protein complementation during thermoporation.  相似文献   

15.
An investigation into the influence of UV irradiation on elastin hydrolysates dissolved in water was carried out using UV-Vis spectroscopy and spectrofluorometry. It was found that the absorption of elastin hydrolysates in solution increased during irradiation of the sample. For fluorescence of elastin hydrolysates we observed both, a decrease and increase of this value during irradiation of the sample. After UV irradiation of the elastin solution we observed a minor increase of overall absorption, most notably between 250 nm and 280 nm. Moreover, after UV irradiation a wide peak emerged between 290 nm and 310 nm with maximum at about 305 nm. The new peak suggests that new photoproducts are formed during UV irradiation of elastin hydrolysates. The fluorescence of elastin hydrolysates was observed at 305 nm and at 380 nm after excitation at 270 nm. UV irradiation caused fluorescence fading at 305 nm and 380 nm. After 30 min of irradiation a new broad weak band of fluorescence, attributable to new photoproducts, emerged in the UV wavelength region with emission maximum between 400 nm and 500 nm.  相似文献   

16.
The local heating of poly(3,4‐ethylenedioxythiophene) (PEDOT) by a photothermal effect directed by near‐infrared (NIR) light induces unfolding of absorbed collagen triple helices, yielding soluble collagen single‐helical structures. This dissociation of collagens allowed the harvesting of a living idiomorphic cell sheet, achieved upon irradiation with NIR light (λ=808 nm). The PEDOT layer was patterned and cells were successfully cultured on the patterned substrate. Cell sheets of various shapes mirroring the PEDOT pattern could be detached after a few minutes of irradiation with NIR light. The PEDOT patterns guided not only the entire shape of the cell sheets but also the spreading direction of the cells in the sheets. This photothermally induced dissociation of collagen provided a fast non‐invasive harvesting method and tailor‐made cell‐sheet patterns.  相似文献   

17.
Silicon dioxide, in the form of nanoparticles, possesses unique physicochemical properties (size, shape, and a large surface to volume ratio). Therefore, it is one of the most promising materials used in biomedicine. In this paper, we compare the biological effects of both mesoporous silica nanoparticles extracted from Urtica dioica L. and pyrogenic material. Both SEM and TEM investigations confirmed the size range of tested nanoparticles was between 6 and 20 nanometers and their amorphous structure. The cytotoxic activity of the compounds and intracellular ROS were determined in relation to cells HMEC-1 and erythrocytes. The cytotoxic effects of SiO2 NPs were determined after exposure to different concentrations and three periods of incubation. The same effects for endothelial cells were tested under the same range of concentrations but after 2 and 24 h of exposure to erythrocytes. The cell viability was measured using spectrophotometric and fluorimetric assays, and the impact of the nanoparticles on the level of intracellular ROS. The obtained results indicated that bioSiO2 NPs, present higher toxicity than pyrogenic NPs and have a higher influence on ROS production. Mesoporous silica nanoparticles show good hemocompatibility but after a 24 h incubation of erythrocytes with silica, the increase in hemolysis process, the decrease in osmotic resistance of red blood cells, and shape of erythrocytes changed were observed.  相似文献   

18.
Herein, we report a new drug‐delivery system (DDS) that is comprised of a near‐infrared (NIR)‐light‐sensitive gold‐nanorod (GNR) core and a phase‐changing poly(ε‐caprolactone)‐b‐poly(ethylene glycol) polymer corona (GNR@PCL‐b‐PEG). The underlying mechanism of the drug‐loading and triggered‐release behaviors involves the entrapment of drug payloads among the PCL crystallites and a heat‐induced phase change, respectively. A low premature release of the pre‐loaded doxorubicin was observed in PBS buffer (pH 7.4) at 37 °C (<10 % of the entire payload after 48 h). However, release could be activated within 30 min by conventional heating at 50 °C, above the Tm of the crystalline PCL domain (43.5 °C), with about 60 % release over the subsequent 42 h at 37 °C. The NIR‐induced heating of an aqueous suspension of GNR@PCL‐b‐PEG under NIR irradiation (802 nm) was investigated in terms of the irradiation period, power, and concentration‐dependent heating behavior, as well as the NIR‐induced shape‐transformation of the GNR cores. Remotely NIR‐triggered release was also explored upon NIR irradiation for 30 min and about 70 % release was achieved in the following 42 h at 37 °C, with a mild warming (<4 °C) of the surroundings. The cytotoxicity of GNR@PCL‐b‐PEG against the mouse fibroblastic‐like L929 cell‐line was assessed by MTS assay and good compatibility was confirmed with a cell viability of over 90 % after incubation for 72 h. The cellular uptake of GNR@PCL‐b‐PEG by melanoma MEL‐5 cells was also confirmed, with an averaged uptake of 1250(±110) particles cell?1 after incubation for 12 h (50 μg mL?1). This GNR@PCL‐b‐PEG DDS is aimed at addressing the different requirements for therapeutic treatments and is envisaged to provide new insights into DDS targeting for remotely triggered release by NIR activation.  相似文献   

19.
The changes in the electroporation process of human erythrocytes membrane due to the direct action of high energy electron radiation were investigated. To avoid the indirect effects caused by radiolytic products of water, the irradiation was performed at liquid nitrogen temperature. The irradiated cells have been exposed to square-wave electric pulses at 4 degrees C in isotonic suspensions to induce membrane electropores. The pores resealing were quantified by monitoring the cell hemolysis. A significant decrease of the resealing process was found for irradiation doses higher than 100 Gy. The mass of molecular structures affected by the direct action of radiation was estimated using the target analysis method. We found a molecular weight Mm approximately 930 kDa roughly corresponding to spectrin tetramer of the cytoskeleton. This suggests that spectrin network plays an important role in the pores resealing of the electropermeabilized erythrocyte membrane.  相似文献   

20.
The effect of the intensity of ultraviolet-A (UV-A) radiation (366 nm) on delayed photohemolysis sensitized by psoralen (PUV-A hemolysis) was studied. It was shown that PUV-A hemolysis induced by UV-A radiation at low fluence rate (20 W m-2) develops according to the well-known colloid-osmotic mechanism: there was no threshold dose of PUV-A treatment. After irradiation all the cells were hemolysed. The rate of PUV-A hemolysis was proportional to the square of the fluence. Hemolysis was delayed in the presence of sucrose. When the fluence rate of UV-A radiation was increased to 150 W m-2, the character of PUV-A hemolysis changed drastically. A threshold fluence appeared, below which PUV-A hemolysis was not induced. At fluences slightly exceeding the threshold, only part of the cells in the suspension were lysed. The dependence of the portion of hemolysing cells on fluence was S-shaped. Increasing the fluence resulted in complete (100%) hemolysis. The rate of complete hemolysis decreased at higher fluences, but was many-fold higher than the rate of low-intensity PUV-A hemolysis at equal fluences. The main features of high intensity PUV-A hemolysis (dependences on fluence and temperature, effect of sucrose) were the same for the hemolysis induced by the addition of previously photooxidized psoralen. We suggest that high intensity PUV-A hemolysis is induced with participation of photooxidized psoralen as an intermediate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号