首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Platinum phases of general formula [Pt(n-), M+, MX] can be electrogenerated from cathodic polarization in dry dimethylformamide containing a supporting electrolyte, MX. The reaction of these electrogenerated Pt phases as reducing agent with aryldiazonium salts was investigated for preparing controlled metal-organic interfaces and characterizing the reactivity of the "reduced platinum phases". In a two-step process, the "reduced platinum phase" locally reacts with aryldiazonium salts, leading to the attachment of aryl groups onto the metal surface in the previously modified areas. Detailed experiments using cyclic voltammetry, X-ray photoelectron spectroscopy (XPS), and in situ electrochemical atomic force microscopy (EC-AFM) were carried out to follow the reaction in solution with the example of NaI as supporting electrolyte (MX = NaI). These studies demonstrate the irreversible attachment of aryl groups onto the platinum electrode. Comparison between the direct electroreduction of aryldiazonium compounds (4-nitrophenyl- and 4-bromophenyldiazonium) on a platinum electrode and their reaction with [Pt2-, Na+, NaI] suggests that a similar general mechanism is responsible for the grafting. However in the second case, no applied potential is required to stimulate the binding thanks to the reductive properties of [Pt2-, Na+, NaI]. Competitive reduction of the organic layer and growth of the layer were observed and analyzed as a function of the injected charge used to initially produce [Pt2-, Na+, NaI]. Similar reactions are highly probable with other MX salts owing to the redox properties observed for this type of platinum phase ([Pt(n-), M+, MX]).  相似文献   

2.
The electrooxidation behavior of BH4(-) on electrocatalytic Pt, hydrolytically active Ni, and noncatalytic Au electrodes were comparatively reexamined and a more generalized reaction mechanism was proposed to explain the very different anodic properties of BH4(-) on the different metal electrodes. In this mechanism, the anodic reaction behavior of BH4(-) are determined by a pair of conjugated reactions: electrochemical oxidation and chemical hydrolysis of BH4(-), the relative rates of which depend on the anodic materials, applied potentials, and chemical states of the anodic surfaces. At Pt surface, the electron number of BH4(-) oxidation increases with the increased potential polarization, while the actual electron number of BH4(-) oxidation on Ni electrode is 4 at most due to the poor electrocatalytic activity of the oxidized Ni surface and the strong catalytic activity of metallic Ni for chemical recombination of the adsorbed H intermediate. On the hydrolytic-inactive Au surface, the anodic reaction of BH4(-) can proceed predominately through direct electrochemical oxidation, delivering a near 8e discharge capacity.  相似文献   

3.
The role of the oxidation state of a platinum polycrystalline surface in the electrocatalytic oxidation of C1 to C4 primary alcohols has been studied by using electrochemical techniques, in situ FTIR spectroscopy and X-ray photoelectron spectroscopy. The results revealed that the oxidation state of the Pt surface plays a key role in the oxidation of primary alcohols, and demonstrated that the oxidation of C1 to C4 primary alcohols on a Pt electrode is controlled by the formation of surface oxides on the Pt electrode at different potentials. It was found that the dependence of the reaction process on the oxidation states of the platinum surface yielded similar features in the cyclic voltammogram for oxidation of different primary alcohols at a Pt electrode. According to the effects in the oxidation of primary alcohols, the surface oxides of platinum may be classified as active and poison species. The Pt surface oxides of higher oxidation states (Pt(OH)3 and PtO2) formed at potentials above 1.0 V (SCE) were identified as poison species, while other lower oxidation states of Pt surface oxides such as PtOH, Pt(OH)2 and PtO may be identified as the possible active species for primary alcohol oxidation.  相似文献   

4.
Metal and metal oxide nanocrystals have sparked great interest due to their excellent catalytic, magnetic, and electronic properties. Particularly, the integration of metallic nanocrystals and one-dimensional (1D) electronically conducting carbons to form metal-carbon hybrids can lead to enhanced physical and chemical properties or even the creation of new properties with respect to single component materials. However, direct access to thermally stable and structurally ordered 1D metal-carbon hybrids remains a primary challenge. We report an in situ fabrication of Co(3)O(4) or Pt nanocrystals incorporated into 1D nanoporous carbons (NPCs) via an organometallic precursor-controlled thermolysis approach. The AB(2)-type (one diene and two dienophile) 3,4-bis(4-dodecynylphenyl)-substituted cyclopentadienone and its relevant cobalt or platinum complex are first impregnated into the nanochannels of AAO (anodic alumina oxide) membranes. The intermolecular Diels-Alder reaction of these precursor molecules affords the formation of cobalt or platinum functionalized polyphenylene skeletons. Subsequent thermolysis transforms the polyphenylene backbones into 1D nanoporous carbonaceous frameworks, while the metallic moieties are reduced into Co or Pt nanocrystals, respectively. After removal of the AAO template, 1D NPCs/Co(3)O(4) or NPCs/Pt are obtained, for which structural characterizations reveal that high-quality Co(3)O(4) or Pt nanocrystals are distributed homogeneously within carbon frameworks. These unique 1D metal-carbon hybrids exhibit a promising potential in electrochemical energy storage. NPCs/Co(3)O(4) is evaluated as an electrode material in a supercapacitor, for which Co(3)O(4) nanocrystals contribute an exceptionally high gravimetric capacitance value of 1066 F g(-1). NPCs/Pt is applied as an electrocatalyst showing excellent catalytic efficiency toward methanol oxidation in comparison to commercial E-TEK (Pt/C) catalyst.  相似文献   

5.
In this work, platinum particles decorated nanostructured poly (1,5-diaminonaphthalene) modified glassy carbon electrode (Pt/Nano-PDAN/MGCE) is prepared. The composite catalysts are characterized by scanning electron microscopy, energy dispersive spectroscopy, and electrochemical methods. The electrochemical methanol oxidation reaction is studied at the surface of this modified electrode. At same Pt loading, the Pt/Nano-PDAN/MGCE can act as higher efficient catalyst for methanol oxidation than that Pt/MGCE. Then, the influence of some parameters such as potential scan rates, switching potential, and methanol concentration on its oxidation as well as long-term stability of the modified electrode have studied by electrochemical methods. Also, ability of the modified electrode toward electrocatalytic oxidation of formaldehyde as an intermediate in methanol oxidation has been investigated.  相似文献   

6.
A new medium system containing dimethyldistearylammonium bromide (DSAB) was developed for the electrochemical detection of superoxide ion in alkaline solution. The reductions of molecular oxygen in alkaline media as a function of the electrode material were evaluated for Pt, Ag, Au and glassy carbon (GC) electrode. And a quasi-reversible redox process for the O2/O2 couple was only obtained at the Pt electrode. The electrochemical responses of the O2/O2 couple at a platinum electrode and a platinized platinum electrode were compared, which suggesting that the electrochemical behavior of the O2/O2 couple was improved greatly at a platinized Pt electrode. The frequency change (mass change) on the surface of Pt electrode was characterized by the electrochemical quartz crystal microbalance. The reduction of the dissolved oxygen at a platinized Pt electrode in the presence of DSAB was also studied by using chronocoulometry and the result indicated that a one-electron reduction was involved. In addition, the scavenging activity of cysteine towards superoxide ion was evaluated by cyclic voltammetry.  相似文献   

7.
低温燃料电池作为一种新型的能源装置,具有能量转换效率高、工作温度低、无污染、液体燃料处理简单、启动迅速等诸多优点,已成为世界各国竞相研究的热点。有机小分子的高效电催化氧化直接关系到低温燃料电池的发展和应用。低温燃料电池的电极材料主要是碳/贵金属复合材料,碳载体易导致贵金属粒子团聚、且易发生电氧化腐蚀等缺点降低了贵金属的利用率和电池的使用寿命。导电聚合物具有高的抗腐蚀性、高的表面积、低电阻和高稳定性得到很大关注。本文综述了近年来国内外导电聚合物/金属复合电极材料在燃料电池中的研究进展。  相似文献   

8.
Using polyvinylpyrrolidone (PVP) as a stabilizing agent, stable colloidal solutions of platinum nanoparticles of different size distributions have been prepared by reducing H2PtCl6 with hydrogen. The UV-vis adsorption peaks at 258 nm due to the adsorption of Pt(IV) species disappear completely, indicating that the Pt(IV) species has been used up and colloidal Pt has been formed. The electrodes have been prepared from aqueous Pt colloids and glassy carbon (GC). The effect of platinum particle size of Pt/GC catalyst electrode on the electrocatalytic oxidation of carbon monoxide has been investigated. The voltammetry shows that a higher potential is needed for the oxidation of absorbed carbon monoxide with a decrease of the platinum particle size for particle sizes larger than 1 nm. But for particle sizes smaller than 1 nm, the potential remains constant while the activity decreases with decreasing the size. The snowlike, well-dispersed, and highly ordered platinum nanoparticles demonstrate high activity in the oxidation reaction of carbon monoxide. The reason may be due to the geometric structure of platinum nanoparticles.  相似文献   

9.
The electrochemical oxidation of methanol has been carefully studied due to its application in fuel cells. In this work electrooxidation of methanol was investigated on bare platinum electrode, the platinum electrode covered with Nafion and platinum supported on zeolite 13X. Along with classical electrochemical methods, attractor reconstruction was used to make rough distinction among possible reaction mechanisms on different forms of Pt. The obtained transient voltammogram records were used to calculate apparent rate constants for methanol oxidation limiting steps in transient period. All samples contributed to methanol oxidation by basically same reaction mechanism, but with significantly different apparent rate constants.  相似文献   

10.
溶胶-凝胶法是常见的制备金属氧化物的方法之一。在溶胶-凝胶法中,各种反应物能达到分子级的均匀混合,因此能制备成份复杂的氧化物材料。目前,溶胶-凝胶法也应用于设计与制备金属纳米材料,特别是合金纳米颗粒。例如,溶胶-凝胶法能应用于制备CoPt、FePt等磁性纳米合金材料以及CoCrCuNiAl高熵合金纳米材料,以及物相结构为有序相的Cu3Pt合金纳米材料。本文综述溶胶-凝胶法设计制备金属纳米材料的研究进展,包括溶胶-凝胶法实施的基本步骤、该方法在制备金属纳米材料方面的具体应用,并着重论述采用热力学计算设计金属及化合物的基本原理。该基本原理包括计算金属氧化物与还原性气体如氢气的还原反应的吉布斯自由能的变化量、金属氧化物的标准电极电位(不同于金属离子的标准电极电位)。最后探讨溶胶-凝胶法设计制备金属纳米材料存在的问题以及后续可能的发展方向。  相似文献   

11.
A mechanism for the open-circuit reduction of oxygen coverage on Pt by organic reducing agents is suggested. It includes a chemical and an electrochemical oxidation of the organic substance and an electrochemical removal and formation of the coverage. The rate of the electrochemical oxidation of the reducing agent is assumed to be determined by its Temkin type adsorption on the free electrode surface. General kinetic equations are derived. The effect of various factors on the form of the curves described by these equations is examined. It is demonstrated that with suitably chosen kinetic parameters a very good coincidence of the calculated and experimental curves can be achieved.  相似文献   

12.
This is a study of the alloy structure, cycling life, and reaction kinetics of LaNi4.7–x Sn0.3Pt x (x=0 and 0.1) metal hydride electrodes, using X-ray diffraction, X-ray absorption spectroscopy, electrochemical charge/discharge cycling, and electrochemical impedance spectroscopy. It is seen that the presence of platinum in the alloy causes an increase of the cycle life and a decrease in the hydrogen equilibrium pressure, activation time, charge storage capacity, and the rate of capacity decay during multicycling. XANES results are consistent with a decrease in the Ni oxidation in the Pt-containing alloy after the electrode cycling, indicating a protection introduced by Pt against Ni oxidation. It was also found that the catalytic activity of charge/discharge is improved with Pt alloying, a factor exclusively related to an increase of the active area due to higher alloy pulverization.  相似文献   

13.
Proton-exchange membrane fuel cells (PEMFCs) use carbon-supported nanoparticles based on platinum and its alloys to accelerate the rate of the sluggish oxygen-reduction reaction (ORR). The most common metals alloyed to Pt include Co, Ni and Cu, and are thermodynamically unstable in the PEMFC environment. Their dissolution yields the formation and redistribution of metal cations (M(y+)) within the membrane electrode assembly (MEA). Metal cations can also contaminate the MEA when metallic bipolar plates are used as current collectors. In each case, the electrical performance of the PEMFC severely decreases, an effect that is commonly attributed to the poisoning of the sulfonic acid groups of the perfluorosulfonated membrane (PEM) and the resulting decrease of the proton transport properties. However, the impact of metal cations on the kinetics of electrochemical reactions involving adsorption/desorption and bond-breaking processes remains poorly understood. In this paper, we use model electrodes to highlight the effect of metal cations on Pt/C nanoparticles coated or not with a perfluorosulfonated ionomer for the CO electrooxidation reaction and the oxygen reduction reaction. We show that metal cations negatively impact the ORR kinetics and the mass-transport resistance of molecular oxygen. However, the specific adsorption of sulfonate groups of the Nafion? ionomer locally modifies the double layer structure and increases the tolerance to metal cations, even in the presence of sulphate ions in the electrolyte. The survey is extended by using an ultramicroelectrode with cavity and a solid state cell (SSC) specifically developed for this study.  相似文献   

14.
The anodic oxidation of serine anion on smooth (Pt) and platinized (Pt(Pt)) platinum electrodes is studied by the methods of cyclic and linear voltammetry, rotating disk electrode, coulometry, and reflectance IR spectroscopy. On both electrodes, the potential regions of electrochemical transformation of this amino acid are determined. It is shown that electrooxidation of serine proceeds with abstraction of 4 and 2 electrons on Pt and Pt(Pt) electrodes, respectively. It is found that the anodic oxidation of serine anions proceeds from the adsorbed state; a possible kinetic scheme of this process is proposed.  相似文献   

15.
The electrochemical oxidation of aliphatic amines (primary, secondary, and tertiary) has been investigated by cyclic voltammetry and preparative electrolysis. The oxidation mechanisms have been established, and the lifetimes of the radical cations have been measured for secondary and tertiary amines. These results have been put in parallel with the attachment of amines to glassy carbon, Au, and Pt electrodes by cyclic voltammetry, X-ray photoelectron spectroscopy (XPS), and infrared reflection-absorption spectroscopy (IRRAS). It is then possible to show that it is not the radical cation but the radical obtained after the deprotonation which reacts with the electrode surface. XPS results also point to the existence of a covalent bond between Au or Pt and the organic moiety.  相似文献   

16.
甲醇在欠电位沉积Sn/Pt电极上催化氧化   总被引:10,自引:0,他引:10  
在欠电位沉积(upd)锡修饰的铂电极(upd-Sn/Pt)上,对甲醇电化学催化氧化过程进行了研究.发现当Pt表面upd-Sn的覆盖率在20%附近时,对甲醇的催化氧化的增强作用最为明显;在电位低于0.35 V (vs RHE)时,甲醇在Pt与upd-Sn/Pt电极上氧化只进行到脱氢生成CO的步骤;在0.35 V以后,表面Sn-OH形成,反应Sn-OH+COads=Sn+CO2+H++e有利于表面CO的去除;而Pt电极上,只有0.6 V以后,才有反应Pt-OH+COads=Pt+CO2+H++e发生.因此,Sn的存在有利于甲醇在较低的电位下氧化; Pt电极上CH3OH脱氢并释放出电子的过程是一个快速的过程,表面CO的去除是甲醇氧化过程的控制步骤;甲醇氧化产生的表面吸附态CO 以线式吸附为主,少量的桥式吸附态CO在反应初期即达到吸附饱和; Pt表面上upd-Sn表现的催化增强作用,在光亮铂电极和在高分散铂黑电极上是一致的.  相似文献   

17.
The trends in adsorption and oxidation of oligoethylene glycols (OEG), namely, di-, tri-, and tetraethylene glycol, on a Pt/Pt electrode are studied. Using a combination of methods of open-circuit potential shifts at the adsorption of organic species and anodic voltammetric curves, it is established that the OEG adsorption on a Pt/Pt electrode is accompanied by hydrogenation, dehydrogenation, and partial destruction of molecules and also that the amount and composition of accumulated adsorbate depend on the initial adsorption potential and the polymer structure. The OEG oxidation on a platinum electrode is considerably hindered as compared with ethylene glycol. The reaction rate decreases with an increase in the OEG molecular mass and is largely limited by the adsorption of molecules on the electrode surface, which is evidenced by the weak dependence of the rate on the potential in the double layer region.  相似文献   

18.
The electrochemical reduction of noble metal electrodes in the presence of redox ionic liquid, 1-ferrocenylethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, [FcEMIM][TFSI], was investigated by cyclic voltammetry. Our experiments suggest the formation of metal with negative oxidation states, in the cases of platinum and gold electrodes [Mn, FcEMIM+]. By analogy with the previous work, the formation of these phases is concomitant with the insertion of the supporting electrolyte; which correspond in our experimental condition to the redox cation of the ionic liquid. As an exciting result, the electrochemical investigations of the reduced electrode in electrolytic solution, containing solvent and supporting electrolyte, evidence the presence of the ferrocene groups at the electrode surface. Moreover, the reduced electrode exhibits the presence of the ferrocene even after, contact with air, after ultrasound, and after physical polishing, highlighting the large stability of this organo-metallic phases formed in this media. The AFM investigations demonstrate the morphological change of the platinum surface after the reduction process. Finally, our works bring a formal electrochemical proof of the presence of the ionic liquid cation inside the electrode material after the cathodic treatment in this media.  相似文献   

19.
Electrooxidation of methanol on upd-Ru and upd-Sn modified Pt electrodes   总被引:2,自引:0,他引:2  
The electrochemical oxidation of methanol has been investigated on underpotentially deposited-ruthenium-modified platinum electrode (upd-Ru/Pt) and on underpotentially deposited-tin-modified platinum electrode (upd-Sn/Pt). The submonolayers of upd-Ru and upd-Sn on a Pt electrode increased the rate of methanol electrooxidation several times as large as that on a pure Pt electrode. The best performance for methanol electrooxidation was obtained on a ternary platinum based catalyst modified by upd-Ru and upd-Sn simultaneously. The influence of the submonolayers of upd-Ru adatoms and upd-Sn adatoms on the oxidation of methanol in acid has been investigated. The effect of Ru on methanol electrooxidation lies on the distribution of Ru adatoms on a Pt surface. It has been shown that as long as the amount of upd-Ru deposits were controlled in a proper range, upd-Ru deposits would enhance the methanol oxidation obtained on a Pt electrode at whichever deposition potential the upd-Ru deposits were obtained. The effects of tin are sensible to the potential range. The enhancement effect of upd-Sn adatoms for the oxidation of methanol will disappear as the electrode potential is beyond a certain value. It is speculated that there exists a synergetic effect on the Pt electrode as adatoms Ru and Sn participate simultaneously in the methanol oxidation.  相似文献   

20.
The catalytic oxidation activity of platinum particles in automobile catalysts is thought to originate from the presence of highly reactive superficial oxide phases which form under oxygen-rich reaction conditions. Here we study the thermodynamic stability of platinum oxide surfaces and thin films and their reactivities toward oxidation of carbon compounds by means of first-principles atomistic thermodynamics calculations and molecular dynamics simulations based on density functional theory. On the Pt(111) surface the most stable superficial oxide phase is found to be a thin layer of alpha-PtO2, which appears not to be reactive toward either methane dissociation or carbon monoxide oxidation. A PtO-like structure is most stable on the Pt(100) surface at oxygen coverages of one monolayer, while the formation of a coherent and stress-free Pt3O4 film is favored at higher coverages. Bulk Pt3O4 is found to be thermodynamically stable in a region around 900 K at atmospheric pressure. The computed net driving force for the dissociation of methane on the Pt3O4(100) surface is much larger than that on all other metallic and oxide surfaces investigated. Moreover, the enthalpy barrier for the adsorption of CO molecules on oxygen atoms of this surface is as low as 0.34 eV, and desorption of CO2 is observed to occur without any appreciable energy barrier in molecular dynamics simulations. These results, combined, indicate a high catalytic oxidation activity of Pt3O4 phases that can be relevant in the contexts of Pt-based automobile catalysts and gas sensors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号