首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In recent years, the layer-by-layer technique has grown in various fields. One of the emerging trends of bio-applications is the use of polysaccharides as main film components, which stems from their intrinsic physical, chemical and biological properties. These allow the simple formation, by self-assembly, of new kinds of mimics of extra-cellular matrices from plant and animal tissues. These assemblies, which possess specific properties arising from their hydration and internal composition, can indeed contain additional functionalities obtained by chemical modification of the biopolymers or film post-processing. They can be molded into different forms (films, membranes, and capsules).  相似文献   

2.
The diffusion coefficient is a fundamental parameter for devices exploiting the ion transport properties of polyelectrolyte multilayers (PEMUs) and complexes. Here, the transport of ferricyanide through a multilayer made from poly(diallyldimethylammonium chloride) (PDADMA) and polystyrene sulfonate (PSS) was studied as a function of temperature or salt concentration. Accurate and precise measurements of ion diffusion coefficients were obtained using steady-state electrochemistry to determine the flux and Fourier transform infrared (FTIR) spectroscopy to measure the PEMU concentration. It was found that the concentration of ferricyanide inside the film decreased with temperature. Membrane transport is strongly thermally activated with activation energy 98 kJ mol(-1). A potential shift with decreasing salt concentration in cyclic voltammograms was translated into a differential flux caused by significantly higher diffusion coefficients for ferricyanide as compared to ferrocyanide.  相似文献   

3.
We present polyelectrolyte multilayer modified electrodes exhibiting novel chemically responsive redox behaviour due to the combination of both redox and metal-ion-ligand functionalities on the same sites.  相似文献   

4.
Xiangying S  Bin L  Ying Z 《Talanta》2011,85(2):1187-1192
Photophysical properties of Rhodamine B bound to water-soluble polyanion sodium poly(4-styrenesulfonate) (PSS) in solution and Quartz/APES/PSS/RB SAMs were investigated. Experiments showed that Rhodamine B aggregated in Quartz/APES/PSS/RB SAMs and its fluorescence behavior was different from that in Quartz/APES/RB SAMs without PSS. The constructed Quartz/APES/PSS/RB SAMs were applied for label-free interfacial fluorescence sensing of DNA with extremely high sensitivity.  相似文献   

5.
We study the growth and internal structure of polyelectrolyte multilayers obtained by combining three polyanions with nine polycations of the ionene family, of systematically varied chemical architecture. We find that, contrary to a generally held belief, ordered organic multilayers are by no way exceptional, provided one of the polyelectrolytes bears groups which induce structure in water, such as long hydrophobic segments or mesogenic groups. However, this condition is not sufficient, as order will or will not emerge in the multilayer depending on the specific pairing of the polyelectrolytes. The results support the notion that layering in the multilayer results from some degree of prestructuring of a water-swollen layer adsorbed during each step of deposition. These findings pave the way to new possible uses of polyelectrolyte multilayers, for example, for applications requiring preferential alignment or strong confinement of specific functional groups.  相似文献   

6.
In this work, the lateral mobility of polyelectrolyte multilayers was investigated by means of the fluorescence recovery after photobleaching (FRAP) technique, with special attention to the effect of relevant parameters during and after preparation. Different polyelectrolytes with respect to charge density, stiffness, and hydrophilicity were compared. From the experimental results emerged that the density of charged sites along the polymer is the most important parameter controlling the formation of polymer complexes. At higher charge density, more complexes are formed, and the diffusion coefficient decreases. It was observed that the intrinsic backbone stiffness reduces the interpenetration of polyelectrolyte layers and the formation of complexes promoting the lateral mobility. In addition, the lateral mobility increases with increasing ionic strength and with decreasing hydration shell of the added anion in the polyelectrolyte solution. The effect of heating or annealing in electrolyte solution after preparation was also investigated along with the embedding of the probing layer at controlled distances to the multilayer surface.  相似文献   

7.
Polyelectrolyte multilayers are built up from ionically modified polyphosphazenes by layer-by-layer assembly of a cationic (poly[bis(3-amino-N,N,N-trimethyl-1-propanaminium iodide)phosphazene] (PAZ+) and an anionic poly[bis(lithium carboxylatophenoxy)phosphazene] (PAZ-). In comparison, multilayers of poly(sodium 4-styrenesulfonate) (PSS) and poly(allylamine hydrochloride) (PAH) are investigated. Frequency-dependent conductivity spectra are taken in sandwich geometry at controlled relative humidity. Conductivity spectra of ion-conducting materials generally display a dc plateau at low frequencies and a dispersive regime at higher frequencies. In the present case, the dispersive regime shows a frequency dependence, which is deviating from the typical behavior found in most ion-conducting materials. Dc conductivity values, which can be attributed to long-range ionic transport, are on the order of sigmadc = 10-10-10-7 S.cm-1 and strongly depend on relative humidity. For PAZ+/PAZ- multilayers sigmadc is consistently larger by one decade as compared to PSS/PAH layers, while the humidity dependence is similar, pointing at general mechanisms. A general law of a linear dependence of log(sigmadc) on relative humidity is found over a wide range of humidity and holds for both multilayer systems. This very strong dependence was attributed to variations of the ion mobility with water content, since the water content itself is not drastically dependent on humidity.  相似文献   

8.
This paper describes an approach to adhere retinal cells on micropatterned polyelectrolyte multilayer (PEM) lines adsorbed on poly(dimethylsiloxane) (PDMS) surfaces using microfluidic networks. PEMs were patterned on flat, oxidized PDMS surfaces by sequentially flowing polyions through a microchannel network that was placed in contact with the PDMS surface. Polyethyleneimine (PEI) and poly(allylamine hydrochloride) (PAH) were the polyions used as the top layer cellular adhesion material. The microfluidic network was lifted off after the patterning was completed and retinal cells were seeded on the PEM/PDMS surfaces. The traditional practice of using blocking agents to prevent the adhesion of cells on unpatterned areas was avoided by allowing the PDMS surface to return to its uncharged state after the patterning was completed. The adhesion of rat retinal cells on the patterned PEMs was observed 5 h after seeding. Cell viability and morphology on the patterned PEMs were assayed. These materials proved to be nontoxic to the cells used in this study regardless of the number of stacked PEM layers. Phalloidin staining of the cytoskeleton revealed no apparent morphological differences in retinal cells compared with those plated on polystyrene or the larger regions of PEI and PAH; however, cells were relatively more elongated when cultured on the PEM lines. Cell-to-cell communication between cells on adjacent PEM lines was observed as interconnecting tubes containing actin that were a few hundred nanometers in diameter and up to 55 microm in length. This approach provides a simple, fast, and inexpensive method of patterning cells onto micrometer-scale features.  相似文献   

9.
10.
In this paper, we describe a rapid, accurate, and convenient method for postsynthetically tuning the optical properties of colloidal photonic crystals. High quality photonic crystal films are first synthesized and then coated iteratively with layers of water-soluble polyelectrolytes. The coating process results in nanometer-scale shifts in the photonic stop band, a process which has been monitored by theoretical modeling. The results suggest a fundamentally different, reproducible layering mechanism inside the confined spaces of the colloidal crystal where polyelectrolyte multilayers are less densely packed.  相似文献   

11.
Periodic multilayers give rise to enhanced X-ray fluorescence when a regime of standing waves occurs within the structure. This regime may concern the primary radiation used to induce the fluorescence, the secondary radiation of fluorescence or both of them. Until now, existing models only dealt with standing wave regime of primary radiation. We present a theoretical approach based on the oscillating dipole model and the coupled-wave theory that can treat efficiently any standing wave regime. We compare our simulations to experimental data available in the literature.  相似文献   

12.
Adsorption of colloidal particles presents an interesting alternative to the modification of surfaces using covalent coupling or physisorption of molecules. However, to tailor the properties of these materials full control over the effective particle-substrate interactions is required. We present a systematic investigation of the adsorption of spherical polyelectrolyte brushes (SPB) onto polyelectrolyte multilayers (PEM). A brush layer grafted from colloidal particles allows the incorporation of various functional moieties as well as the precise adjustment of their adsorption behaviour. In the presence of oppositely charged surfaces the amount of adsorbed SPB monotonically increases with the ionic strength, whereas equally charged substrates efficiently prevent colloidal attachment below a threshold salt concentration. We found that the transition from the osmotic to the salted brush regime at approximately 100 mM coincided with a complete loss of substrate selectivity. In this regime of high ionic strength, attractive secondary interactions become dominant over electrosteric repulsion. Due to the soft polyelectrolyte corona a surface coverage exceeding the theoretical jamming limit could be realized. Both the adsorption kinetics and the resulting thin film morphologies are discussed. Our study opens avenues for the production of two-dimensional arrays and three-dimensional multilayered structures of SPB particles.  相似文献   

13.
There exist two types of polyelectrolyte multilayers: those whose thickness increases linearly with the number of deposition steps, which are nicely structured, and those whose thickness increases exponentially, which resembles hydrogels. This simple picture has recently slightly evolved with the finding that some exponentially growing films enter into a linear growth phase after a certain number of deposition steps. In this study, we investigate the buildup process of hyaluronic acid/poly(L-lysine) (HA/PLL) multilayers that constitute one of the best known exponentially growing systems. The films are built by using two deposition methods: the well-known dipping method and the more recent spraying method where the polyelectrolyte solutions are sprayed alternately onto a vertical substrate. The goal of this study is twofold. First, we investigate the influence of the main parameters (i.e., spraying rate and spraying time) of the spraying method on the film growth process. We find that, as for the dipping method, the film thickness first evolves exponentially with the number of deposition steps, and after a given number of deposition steps, it follows a linear evolution. We find that similar behavior is observed with the dipping method. Second, because the spraying method allows the very fine variation of the different parameters of the buildup, we use this method to investigate the exponential-to-linear transition. We find that this transition always takes place after about 12 deposition steps whatever the values of the parameters controlling the deposition process. We discuss our results in light of a model proposed by Hübsch et al. (Hübsch, E.; Ball, V.; Senger, B.; Decher, G.; Voegel, J. C.; Schaaf, P. Langmuir 2004, 20, 1980-1985) and later by Salom?ki et al. (Salom?ki, M.; Vinokurov, I. A.; Kankare, J. Langmuir 2005, 21, 11232-11240) in which it is assumed that the exponential-to-linear transition is due to a film restructuring that progressively forbids the diffusion of one of the polyelectrolytes constituting the film over part of the film. This "forbidden" zone then grows with the number of deposition steps so that the outer zone of the film that is still concerned with diffusion keeps a constant thickness and moves upward as the total film thickness increases.  相似文献   

14.
The growth, morphology, and interaction/adhesion properties of supported poly(sodium 4-styrenesulfonate)/poly(allylamine hydrochloride) (PSS/PAH) and DNA/PAH multilayers were investigated by means of surface plasmon resonance spectroscopy, atomic force microscope (AFM) imaging, and AFM-related force measurements. Multilayers were assembled on a prelayer of poly(ethylenimine) (PEI) both with and without drying. SPR results showed a linear growth of the assembly in the case of PSS/PAH multilayers and nonlinear growth for DNA/PAH multilayers. Measurements of forces acting between a bare glass sphere and a multilayer-coated surface indicated repulsive or attractive forces, depending on surface charge, which suggests that, on approach, electrostatic forces dominate. On separation, we observed large pull-off forces in the case of positively charged multilayers and weak pull-off forces in the case negatively charged multilayers. Multiple adhesions and plateau regions observed on separation were interpreted in terms of a bridging of multiple polymer chains between the glass particle and the multilayer and a stretching of the polyelectrolyte loops. The dependence of the pull-off force on the number of deposited layers shows regular oscillations.  相似文献   

15.
We describe a method to embed phospholipid vesicles into polyelectrolyte multilayers built up by the alternate deposition of polyanions and polycations. Before deposition, the vesicles are rigidified by polycation adsorption onto their surface avoiding their fusion once deposited on the multilayer surface. The vesicles adsorb to form a compact and "hard" monolayer as imaged by atomic force microscopy. The thickness of the adsorbed vesicle layer, of the order of 250 nm, is very close to the diameter of the vesicles in solution. This work should open the route to the buildup of multilayer films containing phospholipid vesicles that could act as "reservoirs" for drugs or enzymatic nanoreactors.  相似文献   

16.
When neuron-like cells (NLCs) derived from pluripotent embryonal carcinoma cells (P19) are cultured on bare tissue culture substrates, they require a monolayer of fibroblast cells to exhibit normal neurite outgrowth, behavior typical of neuronal cultures. However, substrate treatment with polyelectrolyte multilayers (PEMs) composed of poly(allylamine hydrochloride) (PAH) and poly(styrenesulfonic acid) (PSS) significantly improved these cultures. Cell morphology was more spread, indicative of healthy cells, and direct attachment of neuronal cell bodies to the treated surface was observed. Neuronal outgrowth across the surface was not dependent on an underlying fibroblast monolayer with the PEMs surface treatment. Additionally, the PEMs surface treatment can be used to condition various surfaces, facilitating neuronal cultures on surfaces which are natively hydrophilic (tissue culture polystyrene) or hydrophobic (poly(dimethylsiloxane), PDMS). Microfluidic networks were used to micropattern the PEMs onto PDMS, resulting in confined regions of cellular attachment and directed neuronal outgrowth. The ability of PEMs to encourage NLC attachment without supporting cells to a variety of surfaces and surface geometries greatly simplifies neuronal culture methodology and enables neuronal investigations in new environments.  相似文献   

17.
The development of biomimetic microenvironments will improve cell culture techniques by enabling in vitro cell cultures that mimic in vivo behavior; however, experimental control over attachment, cellular position, or intercellular distances within such microenvironments remains challenging. We report here the rapid and controllable immobilization of suspended mammalian cells within microfabricated environments using a combination of electronic (dielectrophoresis, DEP) and chemical (polyelectrolyte multilayers, PEMS) forces. While cellular position within the microsystem is rapidly patterned via intermittent DEP trapping, persistent adhesion after removal of electronic forces is enabled by surface treatment with PEMS that are amenable to cellular attachment. In contrast to DEP trapping alone, persistent adhesion enables the soluble microenvironment to be systematically varied, facilitating the use of soluble probes of cell state and enabling cellular characterization in response to various soluble stimuli.  相似文献   

18.
We report a study of the electrostatic layer-by-layer self-assembly of electroactive polyelectrolyte multilayers incorporating the redox protein cytochrome c (cyt c) combined with recrystallization of the bacterial cell wall surface layer from Bacillus sphaericus CCM 2177 SbpA (S-layer). The polyelectrolyte multilayer assembly was prepared on flat gold electrodes with a nanometer-scale roughness that allowed monitoring of the film formation throughout all the assembly stages by atomic force microscopy measurements in liquid with respect to topography and forces. The deposition of alternating layers of sulfonated polyaniline and cyt c was carried out by adsorption from the corresponding solutions on a cyt c monolayer electrode. The electroactivity of cyt c within the assembly was confirmed by cyclic voltammetry. We showed that the surface properties of the electrode terminating layer change after each adsorption step accordingly. We also found that S-layer recrystallization on the top of the multilayer film was feasible while electroactivity of cyt c within a polyelectrolyte matrix was partially maintained. This approach offers a new strategy to design a biocompatible and permselective outer envelope of a polyelectrolyte multilayer, promising sensor applications.  相似文献   

19.
In situ nanoindentation was performed on a multilayer of poly(acrylic acid) and a high molecular weight, pendant chain polyviologen under controlled electrochemical potential. The modulus of the thin film of polyelectrolyte complex was reversibly modulated, by about an order of magnitude, upon changing the state of charge within the material using the electrochemically active and addressable viologen repeat units. The applied potential, under aqueous conditions, is believed to control the extent of cross-link formation. Simultaneous quartz crystal microbalance measurements revealed the flux of ions into or out of the multilayer during redox cycling. Apparent film modulus also depends on the identity of the last layer.  相似文献   

20.
Alternating adsorption of poly(acrylic acid) and a polyethylenimine-Pd(II) complex on alumina and subsequent reduction of Pd(II) by NaBH4 yield catalytic Pd nanoparticles embedded in multilayer polyelectrolyte films. The polyelectrolytes limit aggregation of the particles and impart catalytic selectivity in the hydrogenation of alpha-substituted unsaturated alcohols by restricting access to catalytic sites. Hydrogenation of allyl alcohol by encapsulated Pd(0) nanoparticles can occur as much as 24-fold faster than hydrogenation of 3-methyl-1-penten-3-ol. Additionally, the nanoparticle/polyelectrolyte system suppresses unwanted substrate isomerization, when compared to a commercial palladium catalyst. Selective diffusion through poly(acrylic acid)/polyethlyenimine membranes suggests that hydrogenation selectivities are due to different rates of diffusion to nanoparticle catalysts. First-order kinetics are also consistent with a diffusion-limited mechanism. Further exploitation of the versatility of polyelectrolyte films should increase selectivity in hydrogenation as well as other reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号