首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel nano-biocomposite of silver and poly(o-methoxy aniline) (POMA)/DNA hybrid has been prepared by adding DNA solution to an aqueous solution of POMA (emeraldine base, EB) and AgNO(3) mixture. The mixture was aged for 10 days and was freeze-dried to form the hybrid nanocomposite (weight fraction of DNA = 0.75). FESEM pictures show a fibrillar network morphology of the biomolecular hybrid with silver nanoparticles on its surface. The TEM picture also corroborates silver nanoparticle formation in the biomolecular hybrid, and the denser population of nanoparticles in the TEM micrograph as compared to that in the SEM micrograph indicates that the nanoparticles are present inside the fibrils in greater proportion. The dc conductivity value of the hybrid indicates that POMA (EB) is doped by silver ion and the doped POMA form complexes with DNA through electrostatic interaction of the radical cation of POMA (emeraldine salt form, ES) and the DNA anion. During the doping process and Ag nanoparticle formation, a fluctuation of the pi band to polaron band transition peak occurs together with a complementary fluctuation of the polaron band to pi* band transition peak. After 53 h of aging, the former shows a slow but continuous red shift with aging time. This has been attributed to the slow uncoiling of POMA on the DNA surface. The conformation and crystal structure of DNA remain intact during the nano-biocomposite formation. The dc conductivity value of the nano-biocomposite is almost the same as that of the pure POMA-DNA hybrid at the same composition, but the I-V characteristic curve of the nano-biocomposite is somewhat different showing an insulating region on low applied voltage. At higher applied voltage, it shows a semiconducting property characterizing the large band gap semiconducting behavior of the nano-biocomposite.  相似文献   

2.
A poly(o-methoxyaniline) (POMA)/DNA [weight fraction of DNA (W(DNA)) = 0.45] hybrid was prepared by mixing their solutions in sterilized double distilled water. The solution turned green upon aging for a longer time, and the doping of POMA by DNA was complete after about 15 d of aging. The doping was confirmed from the UV-vis spectra where the 599 nm peak of POMA(EB) disappeared and a new peak for a pi to localized polaron band-transition appeared. With increasing aging time the new peak gradually shifted from 674 nm at 3 h to 820 nm at 15 d of mixing and thereafter it remained constant. The absence of a free carrier tail in the UV-vis spectra indicated a coiled structure of POMA in the complex. Circular dichroism spectra of the hybrid solution indicated that the DNA conformation (double helical structure) remained unchanged in the hybrid. The SEM micrograph of the freeze-dried hybrid showed a needle-like morphology of the DNA dispersed in a polymer matrix and it was completely different from the fibrillar network morphology of pure DNA in the solid state. The TEM micrograph indicated a homogeneous dispersion of DNA fibrils in the POMA matrix. The melting temperature of the POMA-DNA hybrid showed an increase compared to that of pure DNA by 5 degrees C, probably caused by an electrostatic interaction between the DNA anion and the POMA radical cation generated in the doping process. WAXS investigations revealed that the DNA crystal structure remained unchanged in the hybrid whereas the POMA crystal structure might be lost. An FT-IR study suggested that interaction occurred between the phosphoric acid group of DNA and a nitrogen atom of POMA through proton transfer from the OH group of the former. A schematic model of the POMA-DNA complex randomly anchoring POMA chains with the DNA molecule was proposed. The dc conductivity of the POMA-DNA complex was found to be ca. 10(-7) S . cm(-1). Hence, this work describes a procedure for making a DNA-conducting polymer hybrid without changing the conformation and structure of DNA. [Diagram: see text]  相似文献   

3.
The reducing property of an organically soluble conducting polymer (poly(o-methoxyaniline), POMA) is used to prepare monodisperse, size-controlled, highly populated, and highly stable silver nanoparticles in an organic medium through an interfacial redox process with an aqueous AgNO3 solution. The transition of emeraldine base (EB) to the pernigraniline base (PB) form of POMA occurs during nanoparticle formation, and the nitrogen atoms of POMA(PB) stabilize Ag nanoparticles by coordination to the adsorbed Ag(+) on the nanoparticle surface. The conductivity of the nanocomposite is on the order of 10(-11) S/cm, indicating that no doping of POMA occurs under the preparation conditions. The nanoparticles are free of excess oxidant and external stabilizer particles. The POMA (EB) concentration tailors the size of nanoparticles, and at its higher concentration (0.01% POMA with 0.01 N AgNO3), very dense Ag nanoparticles (6 x 10(15) particles/m(2)) of almost uniform size and shape are produced. The rate constant and Avrami exponent values of the nanoparticle formation are measured from the time-dependent UV-vis spectra using the Avrami equation. The Avrami exponent (n) values are close to 1, indicating 2D athermal nucleation with the circular shape of the nuclei having diffusion-controlled growth. The rate constant values are almost independent of AgNO3 concentration but are strongly dependent on POMA concentration. The higher rate constant with increasing POMA(EB) concentration has been attributed for the lowering of nanoparticle size due to increased nucleation density.  相似文献   

4.
Finely fibrillar polyaniline sulfonic acid (PSA)/ribonucleic acid (RNA) hybrids are developed by wrapping PSA with RNA from a mixture of aqueous PSA (P) and RNA (R) solutions of different compositions. FTIR spectra suggest H-bonding and π-π interactions in the hybrids and dedoping of self doped PSA during hybrid formation. UV-vis spectra exhibit a blue shift of the π-band to polaron band transition of PSA from 870 to 581 nm due to dedoping. The PR hybrids show enhanced PL-properties when excited at 540 nm relative to PSA which also exhibits rectification behavior in current (I)-voltage (V) curves. Gold nanoparticles (Au NPs) grown on these PR hybrids by the reduction of Au(3+) by PSA show different morphologies with varying composition. FTIR spectra of the nanobiocomposites indicate that Au NPs are stabilized by the co-ordination of the nitrogen atoms of -N=Q=N- bonds of PSA (Q = quinonoid ring). The intensity of the Au plasmon band gradually decreases with time but the PL-intensities of the PAu/PRAu nanocomposites increase with time. The PL-intensity of the nanocomposites is higher than that of PSA and PR hybrids. The DC-conductivity of the PR hybrids increases by an order of magnitude on addition of Au NPs. I-V curves of the nanobiocomposites show negative differential resistance (NDR) in PSA rich systems with a stable NDR ratio of 7 in the PRAu21 and PRAu11 hybrids. Possible reasons from the accumulation of charges on the Au NPs and its stabilization through the π-clouds of RNA bases are discussed. The PRAu11 system also exhibits rectification properties with a rectification ratio of 14.  相似文献   

5.
Shao P  Sun W 《Inorganic chemistry》2007,46(21):8603-8612
A trinuclear cyclometalated Pt(II) 4,6-diphenyl-2,2'-bipyridyl complex with bis(diphenylphosphinomethyl)phenylphosphine bridging ligand ([4-Ph(C--N--N)Pt](3)dpmp) has been synthesized and characterized. It exhibits a broad electronic absorption band from 400 to 600 nm because of its intramolecular Pt...Pt interactions that have been revealed by X-ray crystal structure analysis. This complex shows strong red emission in acetonitrile at room temperature and 77 K. The electronic and emission spectra exhibit concentration and temperature dependence. With increased concentrations, the UV band of the absorption spectrum gradually decreases and broadens, accompanied by an increase of the (1)[dsigma*,pi*] band between 400 and 600 nm. For emission spectra, the 550 nm band that originates from the mononuclear platinum(II) component gradually decreases with increased concentrations, while the band at approximately 700 nm that corresponds to the (3)[dsigma*,pi*] state increases. In addition, the UV-vis and emission spectra exhibit temperature and viscosity-dependence. The concentration-, temperature-, and viscosity-dependent characteristics indicate a conformational change of the complex arising from the rotation along the oligophosphine axis. This complex exhibits broad, positive, and strong transient difference absorption bands from the near-UV to near-IR spectral region. However, because of the increased ground-state absorption in the visible region, the nonlinear transmission of this trinuclear platinum complex decreases.  相似文献   

6.
The present study is an investigation of a reversible thermal color change induced in lamella hybrids of poly(diacetylenecarboxylates) incorporated in layered double hydroxide (LDH) nanosheets. These poly-[m,n]/LDH hybrids prepared by the photo- or gamma-ray-induced polymerization of diacetylenecarboxylates, i.e., CH(3)(CH(2))(m)()(-)(1)CC-CC(CH(2))(n)()(-)(1)CO(2)(-) (mono-[m,n]), and intercalated in LDH lamella sheets, were observed to develop colors ranging from yellow to blue. The change in color was found to depend greatly on the alkyl carbon numbers of the mono-[m,n] (m,n = 10,11; 5,11; 10,5; 16,1) values. Moreover, the conformational alignment of the mono-[m,n] within the LDH was observed to be a crucial factor in color development, which was greatly affected by the intercalation degrees and extent of poly(ene-yne) linkage elongation of the polymers. For the poly-[m,n]/LDH hybrids investigated, a reversible color change was found to occur repeatedly and remarkably for the poly-[10,11]/LDH hybrid. This color change occurred at temperatures between ca. 20 and 80 degrees C back and forth from purple red to bright orange, in stark contrast to the irreversible color change for poly-[10,11] without LDH. Moreover, DSC and Raman spectroscopic studies of the LDH hybrids showed that the thermochromic temperature corresponded to the phase transition temperature of 80 degrees C. XRD analysis also indicated that the poly-[m,n]/LDH hybrid could retain its lamella structure during such thermochromic color changes, enabling conformational recovery in the polymer chains by a cooling down of the hybrids to temperatures lower than the transition temperature, while the nonhybrid poly-[10,11] powders exhibited an irreversible color change at 60 degrees C, above which the polymer powder turned amorphous.  相似文献   

7.
Nanostructured films from two conducting polymers, poly(o-methoxyaniline) (POMA) and poly(3-thiopheneacetic acid) (PTAA), were fabricated with the layer-by-layer (LBL) technique. The electrochemical response of the LBL films differs from that of a POMA cast film, even in a potential range where PTAA is inactive. This is attributed to differences in the diffusion-controlled charge and mass transport, where distinct ionic species participate in the LBL films, as demonstrated by quartz crystal microbalance measurements. The results show that the transport properties of conducting polymers can be changed by alternation with layers of appropriate materials in LBL films.  相似文献   

8.
DNA.RNA hybrid duplexes are biologically important molecules and are shown to have potential therapeutic properties. To investigate the relationship between structures, energetics, solvation and RNase H activity of hybrid duplexes in comparison with pure DNA and RNA duplexes, a molecular dynamics study using the CHARMM27 force field was undertaken. The structural properties of all four nucleic acids considered are in very good agreement with the experimental data. The backbone dihedral angles and the puckering of the (deoxy)ribose indicate that the purine rich strands retain their A-/B-like properties but the pyrimidine rich DNA strand undergoes A-B conformational transitions. The minor groove widths of the hybrid structures are narrower than those in the RNA duplex, a requirement for RNase H binding. In addition, sampling of noncanonical phosphodiester backbone dihedrals by the DNA strands, differential solvation properties and helical properties, most notably rise, are suggested to contribute to hybrids being RNase H substrates. Differential RNase H activity toward hybrids containing purine versus pyrimidine rich RNA strands is suggested to be due to sampling of values of the phosphodiester backbone dihedrals in the DNA strands. Notably, the present results indicate that hybrids have decreased flexibility as compared to RNA, in contrast to previous reports.  相似文献   

9.
The compound (n-Bu4N)2Tc2Br8 was prepared by the metathesis of (n-Bu4N)2Tc2Cl8 with HBr (g) in dichloromethane and characterized by X-ray absorption fine structure spectroscopy and UV-vis spectroscopy. Analysis of the data gives a Tc-Tc distance of 2.16(1) A and a Tc-Br distance of 2.48(1) A. The Tc(III) oxidation state was inferred by the position of the edge absorption, which reveals a shift of 12 eV between (n-Bu4N)2Tc2Br8 and NH4TcO4. The analogous shift between (n-Bu4N)2Tc2Cl8 and NH4TcO4 is 11 eV. The UV-vis spectrum of Tc2Br8(2-) in dichloromethane exhibits the characteristic delta --> delta* transition at 13,717 cm(-1). The M2X8(2-) (M = Re, Tc; X = Cl, Br) UV-vis spectra are compared, and the position of the delta --> delta* transition discussed.  相似文献   

10.
A uniform poly[2-methoxy-5-(2′-ethylhexyloxy)-p-phenylenevinylene] (MEH-PPV)/titania hybrid film was successfully prepared by an in situ sol-gel reaction of titanium isopropoxide (TIP) in the presence of MEH-PPV/2-chlorophenol solution. The annealing treatment increased the conversion of TIP to titania as determined from evidence of the formation of Ti-O-Ti bonds in the Fourier transform infrared (FTIR) spectrum. Scanning electronic microscope (SEM) photographs showed that the morphology and distribution of titania in the hybrid film were strongly related to the amount of water in the in situ sol-gel reaction. The thermal stability of MEH-PPV/titania hybrids was enhanced by the annealing treatment. Small angle X-ray scattering (SAXS) and X-ray diffraction (XRD) analyses indicated that annealing treatment promoted the ordered aggregation of the MEH-PPV chains and crystallization of titania to a certain extent. The blue shift in Ultraviolet-visible (UV-vis) absorption of pure MEH-PPV after annealing was ascribed to the small extent of decomposition and coil conformation which occurred at high temperature. A more-obvious blue shift for the hybrids was observed, which resulted from irregular aggregation and coil conformation of the MEH-PPV chains induced by heterogeneous point, TIP (titania). The red shift in the photoluminescent (PL) emission for pure MEH-PPV resulted from a certain extent of ordered aggregation after annealing. However, only a slight red shift in the PL emission peak for the hybrids was found due to the hindrance of ordered aggregation of MEH-PPV chains in the presence of TIP (titania).  相似文献   

11.
In this work, 3,4-bis(isoproylamino)cyclobut-3-ene-1,2-dione C(10)H(16)N(2)O(2) (I), was synthesized and characterized by (13)C NMR, (1)H NMR, FT-IR, UV-vis spectroscopy and single-crystal X-ray diffraction. DFT method with 6-31G(d,p) basis set has been used to calculate the optimized geometrical parameters, atomic charges, vibrational frequencies and chemical shift values. The calculated vibrational frequencies and chemical shift values are compared with experimental FT-IR and NMR spectra. The results of the calculation shows good agreement between experimental and calculated values of the compound I. The existence of N-H?O type intermolecular ve C-H?O type intramolecular hydrogen bonds can be deduced from differences between experimental and calculated results of FT-IR and NMR. In addition, the molecular electrostatic potential map and frontier molecular orbitals and electronic absorption spectra were performed at B3LYP/6-31G(d,p) level of theory. HOMO-LUMO electronic transition of 4.90 eV are derived from the contribution of the bands π→π* and n→π* The spectral results obtained from FT-IR, NMR and X-ray of I revealed that the compound I is in predominantly enamine tautomeric form, which was supported by DFT calculations.  相似文献   

12.
This paper reports the optical properties of Dy(3+) in sodium fluoroborate glasses of the type XNaF.(89-X)B(2)O(3).10 Al(2)O(3).1Dy(2)O(3) (where X=8, 12, 16, 20 and 24). Judd-Ofelt intensity parameters (Omega(2), Omega(4), Omega(6)) are derived from the absorption spectra. The Judd-Ofelt theory has been applied to interpret the local environment of Dy(3+) ions and bond covalency of RE-O bond. These parameters have been used to calculate radiative transition probabilities (A(rad)), lifetimes (tau(R)) and branching ratios (beta(R)) for the excited level (4)F(9/2). The predicted values of tau(R) are compared with the measured values for (4)F(9/2) level for five glass compositions (Glass (A-E)). The stimulated emission cross-section sigma(lambda(P)) are also evaluated for the (4)F(9/2)-->(6)H(J) (J=11/2, 13/2, and 15/2) transitions.  相似文献   

13.
The FT-Raman and UV-visible spectra of (12S)-1,4,7,10-tetraazadicyclo[10,3,0]-pentadecane-3,11-dione and its derivatives were obtained and discussed. The harmonic vibrational wavenumbers and the corresponding Raman scattering activities in their electronic ground-states were calculated at the DFT-B3LYP/6-31G(d) level of theory. The calculated wavenumbers were then scaled and compared with the experimental values. The 7-(2,4-dinitrophenyl)-(12S)-1,4,7,10-tetrazadicyclo[10,3,0]-pentadecane-3,11-dione derivative has mainly an amide (II) character, while the others have an amide (I) character. Moreover, the different substituents do not cause a significant shift of the vibrational mode of the macrocyclic plane. The electronic vertical excitation energy and the oscillator strength were determined with the help of TDDFT calculations and by employing pure (BLYP) and hybrid (B3LYP, B3P86, and mPW1PW91) functionals together with the 6-31G(d) basis set. The BLYP functional reproduces the UV-vis absorption spectra better than the B3LYP, B3P86, or mPW1PW91 hybrid functionals. A dimolecular model, which considers hydrogen-bonded structures, proved that strong inter- and intramolecular hydrogen bonds are present in these compounds. Due to the transannular effect, the UV-vis absorption spectrum of macrocyclic dioxotetraamines is completely different from that of single amide compounds.  相似文献   

14.
We present the first demonstration of red shifting upon nonplanarity in alkylporphyrins using two pure conformations having known structures with identical substituents. The traditional view about the relationship of spectral red shifting to nonplanar deformation in porphyrins has been that the deformation from planar to nonplanar forms is in itself the cause of the shifting, but recently this view has been challenged. Among the new arguments is that the substituents required to effect conformational change also bring about nuclear rearrangements in the porphyrin complex which is the actual cause of the red shifting. Octaethylporphyrinatonickel(II), however, exists in both planar and ruffled forms which are determined only by the crystal structure, thus making the issue of different substituents moot. Using a polarized specular reflectance UV-vis microspectrophotometer, we have obtained polarized spectra of pure, solid samples of both forms of NiOEP. We find Soret band red shifting in the solid state that is much larger than previous reports of solution spectra and also report Q-band red shifting. We performed ZINDO calculations on monomers and dimers of both forms of NiOEP, based upon reported structures, and have reproduced the reported solution transition energies and our solid-state spectra as well as the red shifts that we and others have found experimentally. We conclude that, at least in this system, red shifting does indeed result primarily from conformation changes in the porphyrin.  相似文献   

15.
Zális S  Amor NB  Daniel C 《Inorganic chemistry》2004,43(25):7978-7985
The near-UV-vis electronic spectroscopy of [Ru(X)(Me)(CO)(2)(iPr-DAB)] (X = Cl or I; iPr-DAB = N,N'-di-isopropyl-1,4-diaza-1,3-butadiene) is investigated through CASSCF/CASPT2 and TD-DFT calculations on the model complexes [Ru(X)(Me)(CO)(2)(Me-DAB)] (X = Cl or I). Convergence of the calculated transition energies for the low-lying metal-to-ligand charge-transfer (MLCT), X-to-ligand charge-transfer (XLCT, X halide ligand), or sigma-bond-to-ligand charge-transfer (SBLCT) to experimental values is analyzed for both methods. On the basis of these accurate calculations, it is shown that whereas the lowest singlet state can be assigned to a nearly pure XLCT state in [Ru(I)(Me)(CO)(2)(Me-DAB)], its character is mainly MLCT in [Ru(Cl)(Me)(CO)(2)(Me-DAB)]. These results are in agreement with time-resolved emission/IR and resonance Raman experimental data. The experimental UV-vis bands are well reproduced by the CASSCF/CASPT2 calculations. The TD-DFT transition energies to the long-range charge transfer states are dramatically affected by the nature of the functional, with lowering leading to meaningless values in the case of nonhybrid functionals. Both methods reproduce well the red shift of the absorption bands on going from the chloride to the iodide complex as well as the shift of the strongly absorbing higher MLCT transition from the visible to the UV domain of energy.  相似文献   

16.
A series of dinuclear complexes of salicylic acid (HSal) and o-phenanthroline (Phen) with different molar ratios of Eu3+ to Y3+ have been synthesized. Their compositions are Eu(x)Y(1-x) (Sal)3(Phen) (x = 0 to approximately 1). Their UV spectra, IR spectra, and fluorescence spectra were studied. The UV spectra of the complexes reflect essentially absorption of the ligands for the fact that no obvious change of wavelength and band shape is found between the spectra of the complexes and that of the ligands except slight red shift. The IR absorption spectra indicate that salicylic acid is coordinated to the rare earth ions and chemical bonds are formed between rare earth ions and nitrogen atoms of o-phenanthroline. The fluorescence spectra of the complexes indicate that the fluorescence emission intensity of europium ion was enhanced by the addition of Y3+, which is referred to as cofluorescence. These facts show that not only the ligands but also the yttrium complex can transfer the absorbed energy to Eu3+ ion in the complexes. Formation of polynuclear complexes appears to be responsible for cofluorescence.  相似文献   

17.
Poly(o‐methoxyaniline) (POMA) and poly(o‐toluidine) (POT) salts doped with different acids (methanesulphonic acid (MeSA), trifluoroacetic acid (TFA), and hydrochloric acid (HCl)) were synthesized by using solid‐state polymerization method. The polymers were characterized by Fourier transform infrared (FTIR) spectra, ultraviolet–visible (UV–Vis) spectrometry, X‐ray diffraction (XRD), cyclic voltammetry (CV), and conductivity measurements. Transmission electron microscopy (TEM) was done to study the morphologies of POMA and POT salts. The FTIR and UV‐Vis absorption spectra revealed that the reduced phase was predominant in POMA salts, and the pernigraniline phase was predominant in POT salts. It was found that POMA salts displayed higher doping level and conductivity. In contrast, POT salts were lower at doping levels and conductivity. In accordance with these results, the electrochemical activity was also found to be lower in POT salts. The XRD patterns showed that the POMA salts displayed higher crystallinity than POT salts. The results from TEM revealed that the morphologies of POMA salts were different from those of POT salts. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

18.
19.
The behavior of the analyte molecules inside the neutral core of the charged electrospray (ES) droplet is not unambiguously known to date. The possibility of protein conformational change inside the charged ES droplet has been investigated. The ES droplets encapsulating the protein molecules were exposed to the acetic acid vapor in the ionization chamber to absorb the acetic acid vapor. Because of the faster evaporation of water than that of acetic acid, the droplets became enriched with acetic acid and thus altered the solvent environment (e.g. pH and polarity) of the final charged droplets from where the naked charged analytes (proteins) are formed. Thus, the perturbation of the ES droplet solvent environment resulted in the protein conformational change (unfolding) during the short lifespan of the ES droplet and that is reflected by the multimodal charge state distribution in the corresponding mass spectra. Further, the extent of this conformational change inside the ES droplet was found to be related to the structural flexibility of the protein. Although the protein conformational change inside the ES droplet has been driven by using acetic acid vapor in the present study, the results would help in the near future to understand the spontaneity of the conformational change of the analyte on the millisecond timescale of phase transition in the natural way of ES process. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
A substantial concentration-dependent red shift of the absorption and emission spectra (77 K) of [Ru(bpy)(2)(POMe-P,O)](2+) (1) (POMe = (2-methoxyphenyl)diphenylphosphine) is reported. NMR experiments show this shift to be due to equilibration of 1 with an aquo complex (1b) (K(eff) = (6 +/- 3) x 10(-3)) that forms upon displacement of the coordinated ether in the hemilabile POMe ligand. The excited-state lifetimes of 1 and 1b at 77 K in solid 2:1 ethanol/acetone solution are tau = 2.13 +/- 0.02 and 1.95 +/- 0.02 mus, respectively. The preparation and X-ray crystal structure of a related complex, [Ru(bpy)(2)(PO(i)Pr-P)(OH(2))](PF(6))(2) (2b) (PO(i)Pr-P = (2-(2-propoxy)phenyl)diphenylphosphine), is also reported. In solution, this species exists as an equilibrium mixture of complexes that cannot be readily separated. This species also has concentration-dependent absorption spectra in 2:1 ethanol/acetone solution, with a significant red shift (20 nm) at lower concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号