首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
This work presents a boundary layer analysis for the free convection heat transfer from a vertical cylinder in bidisperse porous media with constant wall temperature. A boundary layer analysis and the two-velocity two-temperature formulation are used to derive the nonsimilar governing equations. The transformed governing equations are solved by the cubic spline collocation method to yield computationally efficient numerical solutions. The effects of inter-phase heat transfer parameter, modified thermal conductivity ratio, and permeability ratio on the heat transfer and flow characteristics are studied. Results show that an increase in the modified thermal conductivity ratio and the permeability ratio can effectively enhance the free convection heat transfer of the vertical cylinder in a bidisperse porous medium. Moreover, the thermal nonequilibrium effects are strong for low values of the inter-phase heat transfer parameter.  相似文献   

2.
The effect of rotation and anisotropy on the onset of double diffusive convection in a horizontal porous layer is investigated using a linear theory and a weak nonlinear theory. The linear theory is based on the usual normal mode technique and the nonlinear theory on the truncated Fourier series analysis. Darcy model extended to include time derivative and Coriolis terms with anisotropic permeability is used to describe the flow through porous media. The effect of rotation, mechanical and thermal anisotropy parameters, and the Prandtl number on the stationary and overstable convection is discussed. It is found that the effect of mechanical anisotropy is to allow the onset of oscillatory convection instead of stationary. It is also found that the existence of overstable motions in case of rotating porous medium is not restricted to a particular range of Prandtl number as compared to the pure viscous fluid case. The finite amplitude analysis is performed to find the thermal and solute Nusselt numbers. The effect of various parameters on heat and mass transfer is also investigated.  相似文献   

3.
Investigations into the convective transport of heat in porous materials are of interest for many applications in connection with the problem of increasing the efficiency of thermal insulation. In [1–5], convection in Isotropic porous media was considered. However, in many cases porous materials have an essential anisotropy of their permeability. Convective heat transfer has been inadequately studied for this case. In [6], the linearized equations were used to study the convection between infinite horizontal planes with a filling of an anisotropic material; the value of the critical Rayleigh number was found, and this agreed satisfactorily with experimental data. In the present paper, we investigate numerically convection between two infinite coaxial cylinders with an anisotropic porous filling, using the equations of convection in the Darcy—Boussinesq approximation [1–3]. The permeability tensor in the annular region is constructed from its principal values, which can be found experimentally. A method of calculation is developed and a parametric study made of the structure of the flow and of the local and averaged characteristics of the heat transfer, which are of interest for the design of thermal insulation.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 59–64, January–February, 1980.  相似文献   

4.
 The steady mixed convection flow over a vertical wedge with a magnetic field embedded in a porous medium has been investigated. The effects of the permeability of the medium, surface mass transfer and viscous dissipation on the flow and temperature fields have been included in the analysis. The coupled nonlinear partial differential equations governing the flow field have been solved numerically using the Keller box method. The skin friction and heat transfer are found to increase with the parameters characterizing the permeability of the medium, buoyancy force, magnetic field and pressure gradient. However the effect of the permeability and magnetic field on the heat transfer is very small. The heat transfer increases with the Prandtl number, but the skin friction decreases. The buoyancy force which assists the forced convection flow causes an overshoot in the velocity profiles. Both the skin friction and heat transfer increase with suction and the effect of injection is just the reverse. Received on 21 May 1999  相似文献   

5.
In the present study, the importance of the thermal dispersion and the turbulent heat flux in porous media and their effects on the macroscopic distribution of thermal energy are investigated. To this end, turbulent flow and heat transfer within five unit-cells mimicking porous media are solved using large eddy simulation. It is shown that the thermal dispersion and the turbulent heat flux are negligible as compared to the convection term in the macroscopic energy equation. When further scrutinizing this equation, it is revealed that except for the longitudinal components of the thermal dispersion, the other components of thermal dispersion and turbulent heat flux may be neglected away from the boundaries as compared to the interfacial heat transfer. Visualizations of vortices show that the size of the turbulence structures within the cells is of the same order as the size of the pores; therefore, the turbulent heat flux is limited to the intra-pore level. Finally, a discussion is provided on the accuracy of the gradient type diffusion model commonly used for turbulent heat flux in porous media in the absence of macroscopic turbulence. It is shown that the intra-pore turbulence does not affect the macroscopic transport of thermal energy within the porous media studied.  相似文献   

6.
This paper extends the existing studies of heat convection by an external flow impinging upon a flat porous insert to that on a circular cylinder inside a porous medium. The surface of the cylinder is subject to constant temperature and can include uniform or non-uniform transpiration. These cylindrical configurations are introduced in the analyses of stagnation-point flows in porous media for the first time. The equations governing steady transport of momentum and thermal energy in porous media are reduced to simpler nonlinear differential equations and subsequently solved numerically. This reveals the dimensionless velocity and temperature fields of the stagnation-point flow, as well as the Nusselt number and shear stress on the surface of the cylinder. The results show that transpiration on the surface of the cylinder and Reynolds number of the external flow dominate the fluid dynamics and heat transfer problems. In particular, non-uniform transpiration is shown to significantly affect the thermal and hydrodynamic responses of the system in the circumferential direction. However, the permeability and porosity of the porous medium are found to have relatively smaller influences.  相似文献   

7.
Mixed convection flow and heat transfer about an isothermal vertical wall embedded in a fluid saturated porous medium with uniform free stream velocity is considered and the effects of thermal dispersion and viscous dissipation in both aiding and opposing flows are analysed. Similarity solution is not possible due to the inclusion of the viscous dissipation term, series solution is obtained, first and second order effects of dissipation revealed that viscous dissipation lowers the heat transfer rate. Observations also revealed that the thermal dispersion effect enhances the heat transfer rate and the effect of viscous dissipation is observed to increase with increasing values of the dispersion parameter. Received on 21 March 1997  相似文献   

8.
We consider a model describing compressible nuclear waste disposal contamination in porous media. The transport of brine, radionuclides and heat is described by a nonlinear coupled parabolic system. The viscosity of the fluid is unbounded and concentrations and temperature dependent. Using a fixed point approach, we prove existence of physically relevant weak solutions.  相似文献   

9.
Unsteady laminar mixed convection flow (combined free and forced convection flow) along a vertical slender cylinder embedded in a porous medium under the combined buoyancy effect of thermal and species diffusion has been studied. The effect of the permeability of the medium as well as the magnetic field has been included in the analysis. The partial differential equations with three independent variables governing the flow have been solved numerically using a implicit finite difference scheme in combination with the quasilinearization technique. Computations have been carried out for accelerating, decelerating and oscillatory free stream velocity distributions. The effects of the permeability of the medium, buoyancy forces, transverse curvature and magnetic field on skin friction, heat transfer and mass transfer have been studied. It is found that the effect of free stream velocity distribution is more pronounced on the skin friction than on the heat and mass transfer. The permeability and magnetic parameters increase the skin friction, but reduce the heat and mass transfer. The skin friction, heat transfer and mass transfer are enhanced due to the buoyancy forces and curvature parameter. The heat transfer is strongly dependent on the viscous dissipation parameter and the Prandtl number, and the mass transfer on the Schmidt number.  相似文献   

10.
王路君  艾智勇 《力学学报》2017,49(2):324-334
热源作用下饱和多孔介质热固结效应是土木及能源工程领域的一个重要课题.由于问题的复杂性,已有的研究大多将介质假定为均匀各向同性,且将热源假定为恒定强度.实际工程中,天然饱和多孔介质常表现出明显的分层特性,热源强度也存在衰变性,为此本工作采用扩展精细积分法对衰变热源作用下层状饱和多孔介质的热固结问题进行研究.借助于积分变换,将饱和多孔介质热固结问题的偏微分方程转化为变换域内的常微分方程;然后对饱和多孔介质微层元进行合并消元,并结合边界条件,推导出衰变热源作用下层状饱和多孔介质热固结问题在积分变换域内的扩展精细积分解;对所得解答进行相应的数值积分逆变换,可获得所求温度、超静孔压及竖向位移在物理域内的解答.基于上述求解过程,编制相应的计算程序进行数值计算,通过与已有文献对比,验证本文扩展精细积分法在求解层状饱和多孔介质热固结问题中的适应性和正确性;最后通过几组算例,分析热源衰变周期、热源埋深及介质的成层性对热固结效应的影响.结果表明:热源衰变周期对温度和超静孔压的峰值、以及达到峰值的时间均有明显影响,衰变周期越长,二者峰值均越大,且达到峰值所需时间越长;热源埋深对超静孔压及竖向位移变化影响显著,深埋热源作用时热源两侧竖向位移呈对称分布,而浅埋热源两侧则无此现象;饱和多孔介质的分层特性对热固结效应影响明显.  相似文献   

11.
The effects of viscous dissipation on unsteady free convection from an isothermal vertical flat plate in a fluid saturated porous medium are examined numerically. The Darcy–Brinkman–Forchheimer model is employed to describe the flow field. A new model of viscous dissipation is used for the Darcy–Brinkman–Forchheimer model of porous media. The simultaneous development of the momentum and thermal boundary layers are obtained by using a finite difference method. Boundary layer and Boussinesq approximation have been incorporated. Numerical calculations are carried out for various parameters entering into the problem. Velocity and temperature profiles as well as local friction factor and local Nusselt number are shown graphically. It is found that as time approaches infinity, the values of friction factor and heat transfer coefficient approach steady state.  相似文献   

12.
Abstract Aim of the paper is to investigate the effects of linearly varying thermal conductivity, viscous dissipation and Ohmic heating on steady free convection flow of a viscous incompressible electrically conducting liquid having low Prandtl number along an inclined isothermal non-conducting porous plate in the presence of transverse magnetic field. The governing equations of continuity, momentum and energy are transformed into ordinary differential equations using similarity transformation. The resulting coupled and non-linear ordinary differential equations are solved using Runge-Kutta fourth order method and shooting technique. The velocity and temperature distributions are discussed numerically and presented through graphs. Skin-friction coefficient and Nusselt number at the plate are derived, discussed and their numerical values for various values of physical parameters are presented through tables.  相似文献   

13.
On Vaporizing Water Flow in Hot Sub-Vertical Rock Fractures   总被引:1,自引:0,他引:1  
Water injection into unsaturated fractured rock at above-boiling temperatures gives rise to complex fluid flow and heat transfer processes. Examples include water injection into depleted vapor-dominated geothermal reservoirs, and emplacement of heat-generating nuclear wastes in unsaturated fractured rock. We conceptualize fractures as two-dimensional heterogeneous porous media, and use geostatistical techniques to generate synthetic permeability distributions in the fracture plane. Water flow in hot high-angle fractures is simulated numerically, taking into account the combined action of gravity, capillary, and pressure forces, and conductive heat transfer from the wall rocks which gives rise to strong vaporization. In heterogeneous fractures boiling plumes are found to have dendritic shapes, and to be subject to strong lateral flow effects. Fractures with spatially-averaged homogeneous permeabilities tend to give poor approximations for vaporization behavior and liquid migration patterns. Depending on water flow rates, rock temperature, and fracture permeability, liquid water can migrate considerable distances through fractured rock that is at above-boiling temperatures and be only partially vaporized.  相似文献   

14.
An approach to describe heat transfer in porous media is presented on the basis of the continuous time random walk (CTRW) framework. CTRW is capable of quantifying both local equilibrium and non-equilibrium heat transfer in heterogeneous domains, and is shown here to match published experimental data of non-equilibrium thermal breakthrough. It is argued that CTRW will be particularly applicable to the quantification of heat transfer in naturally heterogeneous geological systems, such as soils and geothermal reservoirs.  相似文献   

15.
Lattice Boltzmann direct numerical simulations of turbulent heat transfer over and inside anisotropic porous media are performed. This study considers turbulent plane channel flows whose bottom walls are made from the porous media at the bulk Reynolds number of 2900 with isothermal and conjugate heat transfer wall conditions. Four different porous walls are considered. They are walls with only the wall-normal permeability, with the wall-normal and spanwise permeabilities, with the wall-normal and streamwise permeabilities, and with the isotropic wall-normal, spanwise and streamwise permeabilities. The porosity of the porous walls ranges from 0.6 to 0.8. Discussions on the effects of the anisotropic permeability on turbulent thermal fields are carried out by the instantaneous flow visualizations and the statistical quantities. In particular, temperature fluctuations, turbulent and dispersion heat fluxes are examined both inside and outside the porous walls. Finally, the heat transfer performance is discussed considering the effects of the anisotropic permeability.  相似文献   

16.
We present the benchmarking of a new finite element – finite volume (FEFV) solution technique capable of modeling transient multiphase thermohaline convection for geological realistic p-T-X conditions. The algorithm embeds a new and accurate equation of state for the NaCl–H2O system. Benchmarks are carried out to compare the numerical results for the various component-processes of multiphase thermohaline convection. They include simulations of (i) convection driven by temperature and/or concentration gradients in a single-phase fluid (i.e., the Elder problem, thermal convection at different Rayleigh numbers, and a free thermohaline convection example), (ii) multiphase flow (i.e., the Buckley–Leverett problem), and (iii) energy transport in a pure H2O fluid at liquid, vapor, supercritical, and two-phase conditions (i.e., comparison to the U.S. Geological Survey Code HYDROTHERM). The results produced with the new FEFV technique are in good agreement with the reference solutions. We further present the application of the FEFV technique to the simulation of thermohaline convection of a 400°C hot and 10 wt.% saline fluid rising from 4 km depth. During the buoyant rise, the fluid boils and separates into a high-density, high-salinity liquid phase and a low-density, low-salinity vapor phase.  相似文献   

17.
This article presents a simple method for coupling the equations for fluid and heat flow in a porous medium with a rock mechanics model based on a simplified Mohr–Coulomb yield criterion. The aim is to investigate the effects of introducing a brittle–ductile transition zone (BDTZ) into models of the large scale hydrology of systems like the Taupo Volcanic Zone (TVZ) in New Zealand. The coupling between fluid/heat flow and rock mechanics is only partial in that it assumes that the local strain rate and lithostatic pressure are known a priori. A simple empirical relationship between the permeabilities of rock in its brittle and ductile states is also assumed, which mimics the effect of slow thermal creep in closing fluid pathways by reducing the effective permeability. This model is first applied to a number of simple situations where large scale convection of groundwater occurs above a depth of 20-km. These examples demonstrate the formation of a horizontal brittle–ductile transition zone under conductive conditions with uniform strain, and how this responds to local changes in pressure, temperature and strain rate. The presence of low permeability below the BDTZ effectively defines the greatest depth to which groundwater can steadily penetrate, providing a feedback to these models which influences the transport of heat and mass on all the length scales. The TVZ provides inspiration for the second model setting. Localised sources of water and heat, modelled on magmatic sill-like structures at a depth of 10-km, induce a BDTZ which shallows from 14-km to less than 10-km, consistent with geophysical estimates in the TVZ. A common feature of the models is that strong downflows of surface water occur in permeable regions adjacent to the heat sources, which depress the BDTZ by several kilometres between the geothermal areas. Water with near-surface temperatures can thus exist at great depths in these regions. Lastly, the models imply that the geothermal areas in the TVZ probably do not occur directly above any localised heat source, but are instead displaced towards the centre of the TVZ rift.  相似文献   

18.
Conductive and convective transport are related in two phase porous media, provided capillary effects are negligible. This paper shows that the role of conduction will be unimportant, relative to convective effects, for sufficiently high temperatures and sufficiently high permeabilities. An approximately linear relationship holds between temperature and the logarithm of permeability, above which conduction is unimportant relative to convection.  相似文献   

19.
The Guyer–Krumhansl equation is coupled with the Cattaneo–Fox law for the temperature and heat flux fields to study thermal convection in a fluid-saturated Darcy porous material. In particular the effects of the Guyer–Krumhansl terms on oscillatory convection are studied. It is found that for a certain range of the Guyer–Krumhansl coefficient stationary convection occurs while changing the range results in oscillatory convection. Numerical results quantify this effect.  相似文献   

20.
Similarity solutions are proposed for the analysis of free convection flow over a non-isothermal body of arbitrary shape embedded in porous media in the presence of internal heat generation. The porous medium is saturated with non-Newtonian power law fluid. The effect of temperature dependent viscosity on heat transfer rates is investigated. The linearized version of the Arrhenius law for temperature dependent viscosity is considered and it is shown that the heat transferred is more for a less viscous fluid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号