首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A thermal postbuckling analysis is presented for a moderately thick rectangular plate subjected to (1) uniform and non-uniform tent-like temperature loading; and (2) combined axial compression and uniform temperature loading. The initial geometrical imperfection of plate is taken into account. The formulations are based on the Reissner-Mindlin plate theory considering the effects of rotary inertia and transverse shear deformation. The analysis uses a deflection-type perturbation technique to determine the thermal buckling loads and postbuckling equilibrium paths. Numerical examples are presented that relate to the performances of perfect and imperfect, moderately thick rectangular plates and are compared with the results predicted by the thin plate theory.  相似文献   

2.
The method of lines based on Hu Hai-chang's theory for the vibration and stability of moderate thick plates is developed. The standard nonlinear ordinary differential equation (ODE) system for natural frequencies and critical load is given by use of ODE techniques, and then any indicated eigenvalue could be obtained directly from ODE solver by employing the so-called initial eigenfunction technique instead of the mode orthogonality condition.Numerical examples show that the present method is very effective and reliable.  相似文献   

3.
Three-dimensional elasticity solutions for static bending of thick functionally graded plates are presented using a hybrid semi-analytical approach-the state-space based differential quadrature method (SSDQM). The plate is generally supported at four edges for which the two-way differential quadrature method is used to solve the in-plane variations of the stress and displacement fields numerically. An approximate laminate model (ALM) is exploited to reduce the inhomogeneous plate into a multi-layered laminate, thus applying the state space method to solve analytically in the thickness direction. Both the convergence properties of SSDQM and ALM are examined. The SSDQM is validated by comparing the numerical results with the exact solutions reported in the literature. As an example, the Mori-Tanaka model is used to predict the effective bulk and shear moduli. Effects of gradient index and aspect ratios on the bending behavior of functionally graded thick plates are investigated.  相似文献   

4.
The Lurie-Vorovich method of homogeneous solutions is discussed with reference to the reduction problem. A general procedure for studying the three-dimensional stress concentration in multiply connected bodies of finite size is proposed. Model problems are solved to examine the influence of geometrical parameters on the stress state. The Lurie-Vorovich method is generalized to media with complicated properties and demonstrated with problems in composite mechanics and crack theory __________ Translated from Prikladnaya Mekhanika, Vol. 43, No. 2, pp. 45–69, February 2007. For the centenary of the birth of G. N. Savin.  相似文献   

5.
This paper describes a method for free vibration analysis of rectangular plates with any thicknesses, which range from thin, moderately thick to very thick plates. It utilises admissible functions comprising the Chebyshev polynomials multiplied by a boundary function. The analysis is based on a linear, small-strain, three-dimensional elasticity theory. The proposed technique yields very accurate natural frequencies and mode shapes of rectangular plates with arbitrary boundary conditions. A very simple and general programme has been compiled for the purpose. For a plate with geometric symmetry, the vibration modes can be classified into symmetric and antisymmetric ones in that direction. In such a case, the computational cost can be greatly reduced while maintaining the same level of accuracy. Convergence studies and comparison have been carried out taking square plates with four simply-supported edges as examples. It is shown that the present method enables rapid convergence, stable numerical operation and very high computational accuracy. Parametric investigations on the vibration behaviour of rectangular plates with four clamped edges have also been performed in detail, with respect to different thickness-side ratios, aspect ratios and Poisson’s ratios. These results may serve as benchmark solutions for validating approximate two-dimensional theories and new computational techniques in future.  相似文献   

6.
In this paper an accurate solution for the thick rectangular plate with free edges laid onelastic foundation is presented.The superposition method of trigonometric series is used.The method can solve this kind of plates directly and simply.Its results completely satisfythe boundary conditions of the four free edges and nicely agree with the solutions by WangKe-lin and Huang Yi.  相似文献   

7.
To begin with, in this paper, the displacement governing equations and the boundary conditions of nonsymmetrical large deflection problem of circular thin plates are derived. By using the transformation and the perturbation method, the nonlinear displacement equations are linearized, and the approximate boundary value problems are obtained. As an example, the nonlinear bending problem of circular thin plates subjected to comparatively complex loads is studied.  相似文献   

8.
The BEM is developed for nonlinear free and forced vibrations of circular plates with variable thickness undergoing large deflections. General boundary conditions are considered, which may be also nonlinear. The problem is formulated in terms of displacements. The solution is based on the concept of the analog equation, according to which the two coupled nonlinear differential equations with variable coefficients pertaining to the in-plane radial and transverse deformation are converted to two uncoupled linear ones of a substitute beam with unit axial and unit bending stiffness, respectively, under fictitious quasi-static load distributions. Numerical examples are presented which illustrate the method and demonstrate its accuracy.  相似文献   

9.
Based on complex variables and conformal mapping, the elastic wave scat- tering and dynamic stress concentrations in the plates with two holes are studied by the refined dynamic equation of plate bending. The problem to be solved is changed to a set of infinite algebraic equations by an orthogonM function expansion method. As examples, under free boundary conditions, the numerical results of the dynamic moment concen- tration factors in the plates with two circular holes are computed. The results indicate that the parameters such as the incident wave number, the thickness of plates, and the spacing between holes have great effects on the dynamic stress distributions. The results are accurate because the refined equation is derived without any engineering hypothese.  相似文献   

10.
In this paper, a method of constructing displacement-based element for thick/thin plates is developed by using the technique of generalized compatibility, and a rectangular displacement based element with 12 degrees of freedom for thick/thin plates is presented. This method enjoys a good accuracy with simple formulation and is free of shear locking as the thickness of the plate approaches zero. The project supported by National Natural Science Foundation of China through Grant No. 59208075  相似文献   

11.
A method to determine weak or defective bonding areas within the brazed adjoining contact surfaces of composite ceramic-metal plates is proposed. The plates include voids, as well as hairline cracks in the ceramic layer, caused by the high-temperature brazing process. To detect these flaws, transient flexural waves are generated and transmitted through the plate by means of an attached piezoelectric transducer. These pulses are a narrow band signal generated in the time domain. The characteristic wavelengths corresponding to the narrow frequency spectrum may be larger than the size of the flaw. Dynamic holographic interferometry using a double-pulsed twin-cavity Nd:YAG laser, comprising two independent reference beams, was used to measure the response. The experimental interferograms (phase maps) coincide rather precisely with analytic results derived from Mindlin's plate equations (including effects of shear and rotary inertia).  相似文献   

12.
Summary Free and forced vibrations of moderately thick, transversely isotropic plates loaded by lateral forces and hydrostatic (isotropic) in-plane forces are analyzed in the frequency domain. Influences of shear, rotatory inertia, transverse normal stress and of a two-parameter Pasternak foundation are taken into account. First-order shear-deformation theories of the Reissner–Mindlin type are considered. These theories are written in a unifying manner using tracers to account for the various influencing parameters. In the case of a general polygonal shape of the plate and hard-hinged support conditions, the Reissner-Mindlin deflections are shown to coincide with the results of the classical Kirchhoff theory of thin plates. The background Kirchhoff plate, which has effective (frequency-dependent) stiffness and mass, is loaded by effective lateral and in-plane forces and by imposed fictitious “thermal” curvatures. These deflections are further split into deflections of linear elastic prestressed membranes with effective stiffness, mass and load. This analogy for the deflections is confirmed by utilizing D'Alembert's dynamic principle in the formulation of Lagrange, which yields an integral equation. Furthermore, the analogy is extended in order to include shear forces and bending moments. It is shown that in the static case, with no in-plane prestress taken into account, the stress resultants for certain groups of Reissner-type shear-deformable plates are identical with those resulting from the Kirchhoff theory of the background. Finally, results taken from the literature for simply supported rectangular and polygonal Mindlin plates are yielded and verified by analogy in a quick and simple manner. Received 29 September 1998; accepted for publication 22 June 1999  相似文献   

13.
Bending analysis of functionally graded plates using the two variable refined plate theory is presented in this paper.The number of unknown functions involved is reduced to merely four,as against five in other shear deformation theories. The variationally consistent theory presented here has, in many respects,strong similarity to the classical plate theory. It does not require shear correction factors,and gives rise to such transverse shear stress variation that the transverse shear stresses vary parabolically across the thickness and satisfy shear stress free surface conditions.Material properties of the plate are assumed to be graded in the thickness direction with their distributions following a simple power-law in terms of the volume fractions of the constituents.Governing equations are derived from the principle of virtual displacements, and a closed-form solution is found for a simply supported rectangular plate subjected to sinusoidal loading by using the Navier method.Numerical results obtained by the present theory are compared with available solutions,from which it can be concluded that the proposed theory is accurate and simple in analyzing the static bending behavior of functionally graded plates.  相似文献   

14.
NONLINEARTHREE-DIMENSIONALANALYSISOFCOMPOSITELAMINATEDPLATES¥(江晓禹,张相周,陈百屏)JiangXiaoyu;(SouthwesternJiaotongUniversity,Chengdu6...  相似文献   

15.
Using the complex variable method and conformal mapping, scattering of flexural waves and dynamic stress concentrations in Mindlin's thick plates with a cutout have been studied. The general solution of the stress problem of the thick plate satisfying the boundary conditions on the contour of cutouts is obtained. Applying the orthogonal function expansion technique, the dynamic stress problem can be reduced into the solution of a set of infinite algebraic equations. As examples, numerical results for the dynamic stress concentration factor in Mindlin's plates with a circular, elliptic cutout are graphically presented in sequence. The project supported by the National Natural Science Foundation of China  相似文献   

16.
Rational finite element method for elastic bending of reissner plates   总被引:1,自引:0,他引:1  
IntroductionAsawell-establishedandsophisticatednumericalanalysistechniqueforthedifferentialequahons,thefiniteelementmethodwasoriginatedindependentlybythedomesticandtheforeignmechanicalinvestigatorstheyyearsago.ItfoundforthefirsttimewideapplicationsintheelasticstfUctolproblemsandwiththedevelopmentofcomputerextendedinvaryingdegreestOalmostalltheengineeringdisciplinesandmanyscientificandtechnologicalfields.Thisleadstoadramaticbreakthroughforthecurrentcomputationalmathematics.Themathematicalbasis…  相似文献   

17.
基于小波微分求积法的薄板弯曲分析   总被引:1,自引:1,他引:1  
张纯  仲政 《计算力学学报》2008,25(6):863-867
利用小波微分求积法(WDQM)对任意荷载作用下的薄板弯曲问题进行了求解分析。数值算例表明,小波微分求积法与一般的DQ法相比具有很好的适用性,特别是薄板受集中荷载或不连续分布荷载作用时,由于小波基函数的紧支撑特性与其对突变信号良好的描述能力,WDQ法的精度明显优于一般的DQ法,具有良好的应用前景。  相似文献   

18.
杨端生  黄炎  李广利 《应用力学学报》2012,29(2):220-224,244
根据各向异性矩形薄板剪切屈曲横向位移函数的微分方程建立了一般性的解析解。该一般解包括三角函数和双曲线函数组成的解,它能满足四个边为任意边界条件的问题;该一般解还包括代数多项式解,它能满足四个角的边界条件问题。因此,这一解析解可用于精确地求解任意边界的各向异性矩形板的剪切屈曲问题。其中待定常数可由四边和四角的边界条件来确定,由此得出的齐次线性代数方程系数矩阵行列式等于零可以求得各阶临界载荷及其屈型。结合配点法,利用变形的对称和反对称性,以及对称迭层正方形板均可使计算更简单。以四边平夹的对称角铺设复合材料迭层板为例进行了计算和讨论。  相似文献   

19.
求解不连续中厚板自由振动的微分容积单元法   总被引:2,自引:0,他引:2  
基于区域叠加原理和微分容积法,发展了一种新型的数值方法——微分容积单元法,用以分析具有不连续几何特征的中厚板的自由振动。根据板的不连续情况将其划分为若干单元,在每个单元内用微分容积法将控制微分方程离散成为一组线性代数方程.在相邻的单元连接处应用位移连续条件和平衡条件,引入边界约束条件后得到一套关于各配点位移的齐次线性代数方程,由此可导出求解系统固有频率的特征方程。本文用子空间迭代法求解特征方程,并以开孔板、混合边界条件板和突变厚度板为例研究了方法的收敛性和计算精度。  相似文献   

20.
In this paper an equation of motion is presented for a general thick viscoelastic plate, including the effects of shear deformation, extrusion deformation and rotatory inertia. This equation is the generalization of equations of motion for the corresponding thick elastic plate, and it can be degenerated into several types of equations for various special cases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号