首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This review presents scientific findings concerning the recycling of bioplastics, their blends and thermoplastic biocomposites, with special focus on mechanical recycling of bio-based materials. The paper does not include bio-based commodity plastics such as bio-derived polyolefins that are identical to their petroleum-based counterparts and that can be recycled in the same way. During the past few years, recycling of biopolymers and their blends has been studied using both mechanical and chemical methods, whereas in biocomposites, the focus has been on mechanical recycling. This review goes through the findings on the recyclability of various materials, the strengths and weaknesses of applied methods, as well as the potential strategies and opportunities for future improvements. There are still many blends that have not been investigated for their recyclability. Information about commercially available blends containing bioplastics is summarised in the Appendix because of the importance of their possible effects on the conventional plastic recycling streams.  相似文献   

2.
Although the thermal degradation of polyacrylonitrile (PAN) is unchanged by blending with poly(methyl methacrylate) (PMMA), the degradation of PMMA is profoundly altered in the presence of PAN. The low temperature phase of the reaction is hindered although monomer is still the predominating product. At higher temperatures the monomer production gives way to the appearance of methanol, carbon dioxide, carbon monoxide and chain fragments which incorporate a variety of carbonyl structures.These results are interpreted in terms of initial reaction of methyl methacrylate units with the ammonia formed by degradation of the PAN. The amide-ester copolymer thus formed undergoes a complex degradation process at higher temperatures which includes inter unit cyclisations, chain fragmentation and the formation of methanol and oxides of carbon. Mechanisms are proposed and discussed.  相似文献   

3.
In the present work, a novel PAN-based form-stable composite phase change materials with the methyl stearate (MES) encapsulated in the supporting matrices of polyacrylonitrile (PAN) nanofibers were fabricated through electrospunning for the storage and retrieval of thermal energy. Influences of graphene oxide (GO) addition on the chemical properties, structural morphologies, mechanical properties, thermal energy storage properties, thermal stability, and thermal energy storage/retrieval rates of electrospun MES/PAN/GO phase change composite nanofibers were systematically investigated by FT-IR, FE-SEM, tensile testing, DSC, TG, and measurement of melting/freezing times, respectively. The results revealed that the incorporation of GO effectively enhanced the mechanical properties, thermal stability, as well as heat storage and release rates of the phase change composite nanofibers. The averaged tensile strength of electrospun MES/PAN/GO phase change composite nanofibers increased significantly by 573 % with 10 mass% loading of GO, while elongation at break had a maximum 107 % increment when adding 3 mass% of GO. The DSC results indicated that the electrospun PAN-based phase change composite nanofibers with various GO loadings had suitable phase transition temperatures with the latent heat ranging from about 92 to 109 kJ kg?1 and exhibited good thermal reliability in terms of DSC measurements during 50 melting-freezing cycles. Moreover, the melting and freezing time were significantly decreased about 44 and 43 % for the MES/PAN/GO5, as well as 59 and 64 % for the MES/PAN/GO10 after introducing the GO into the composite nanofibers systems.  相似文献   

4.
A dielectric study on polyacrylonitrile (PAN), poly-2-hydroxyethyl methacrylate (P-HEMA) and copolymers of acrylonitrile and HEMA in the temperature range 30–150° is reported. The loss peaks occur in the frequency region 0.1–100 kHz at temperatures between 110° and 140 for PAN. In copolymers of acrylonitrile with HEMA, these loss peaks were present although their positions on temperature scale and their peak heights depended on the HEMA content. For P-HEMA no relaxation peak was observed in this range of frequency and temperature. The results for copolymers compared with those for the homopolymers suggest that the loss peaks in PAN are due to molecular motion in amorphous regions.  相似文献   

5.
The aim of this work is to describe a novel methodology for optimizing the stabilization of polyacrylonitrile (PAN) fibers, through designing of proper thermal treatment. The methodology is based on a set of design rules and the procedure for implementing them, utilizing the time‐temperature‐transition (TTT) and the maximum permittable stress (max.stress) plots. The proposed approach is implemented in order to optimize the stabilization of commercial PAN fibers, resulting in a series of multistage thermal treatments. The changes of both physical and chemical structures of PAN during the progress of the multistage treatments were investigated and showed that the fibers were progressively converted into completely stabilized material; this gradual transformation permitted improvement of fiber annealing and minimized the effect of the decomposition reactions. The proposed methodology can be universally applied for achieving the global optimum of the stabilization process for any PAN precursor.  相似文献   

6.
The phase diagram of ternary mixtures composed of cellulose, polyacrylonitrile and dimethylacetamide–7% LiCl was determined at room temperature. Homogeneous solutions were observed at low polymer concentrations. Two demixing areas were experimentally evidenced when the concentration increased: the first corresponds to an equilibrium between isotropic phases, while the second represents the coexistence of a cellulose mesophase with an isotropic phase. The diagram is discussed in terms of the interaction parameters, determined via light scattering.  相似文献   

7.
A rare miscible polyacrylonitrile (PAN) blend system is reported. PAN is miscible with poly(p‐vinylphenol) (PVPh) as shown by thermal and spectroscopic studies. A single glass transition temperature was found in each blend. Infrared spectroscopic studies showed that the hydroxyl band of PVPh and the cyano band of PAN shifted to lower frequencies upon blending, showing the existence of specific interactions between the two polymers. The involvement of cyano groups in specific interactions was further evidenced by the development of a high‐binding‐energy N1s peak in each blend from X‐ray photoelectron spectroscopic studies.  相似文献   

8.
Benzoxazine-bismaleimide blends: Curing and thermal properties   总被引:4,自引:0,他引:4  
A blend of bisphenol A based benzoxazine (Bz-A) and a bismaleimide (2,2-bis[4(4-maleimidophenoxy) phenyl] propane (BMI), was thermally polymerised in varying proportions and their cure and thermal characteristics were investigated. The differential scanning calorimetric analysis, supplemented by rheology confirmed a lowering of the cure temperature of BMI in the blend implying catalysis of the maleimide polymerisation by benzoxazine. FTIR studies provided evidences for the H-bonding between carbonyl group of BMI and -OH group of polybenzoxazine in the cured matrix. The cured matrix manifested a dual phase behaviour in SEM and DMTA with the minor phase constituted by polybenzoxazine dispersed in an interpenetrating polymer network (IPN) of polybenzoxazine and cured BMI. The IPN possessed improved thermal stability over the constituent polybenzoxazine. A benzoxazine monomer possessing allyl functional groups, 2,2′-bis(8-allyl-3-phenyl-3,4-dihydro-2H-1,3-benzoxazinyl) propane (Bz-allyl) was reactively blended with the same bismaleimide in varying stoichiometric ratios (Bz-allyl/BMI), where the curing involved mainly Alder-ene reaction between allyl- and maleimides groups and ring-opening polymerisation of benzoxazine. The rheological analysis showed the absence of catalytic polymerisation of BMI in this case. The overall processing temperature was lowered in the blend owing to the co-reaction of the two systems to form a single-phase matrix. The cured resins of both Bz-A/BMI and Bz-allyl/BMI blends exhibited better thermal stability than the respective polybenzoxazines. The Tg of the IPN was significantly improved over that of polybenzoxazine (Bz-A). However, the co-reaction resulted in a marginal decrease in the Tg of the system in comparison to the polybenzoxazine (Bz-allyl).  相似文献   

9.
Blends of ABS (acrylonitrile–butadiene–styrene) with phenoxy(poly(hydroxyether bisphenol A)) were prepared using a Branender single screw extruder. Scanning and transmission electron micrographs (SEM, TEM) showed a typical two-phase morphology; particle-in-matrix (90/10) (ABS/phenoxy by weight), 70/30, 10/90), island/sea (30/70) and co-continuous (50/50) morphologies. The glass transition temperature (Tg) of SAN was almost unchanged in the blends, while the Tg of phenoxy increased by about 5 °C in the blends. The synergistic effect of tensile modulus and strength was noted in ABS-rich blends, where a drastic drop of ductility was seen, and the results were interpreted in terms of rubber particle migration form SAN to phenoxy phase, which was visualized by TEM. Melt viscosity showed yield in ABS-rich blends, and generally followed the log additivity.  相似文献   

10.
The vibrational parts of a liquid's heat capacity Cp and thermal expansion coefficient alpha may be determined from dynamic measurements. The Cp data for Pd40Ni40P20 and 0.4 Ca(NO3)(2).0.6 KNO3 have been analyzed accordingly, and it is found that change in the vibrational part at liquid-glass transformation is negligible. Analysis for alpha of poly(styrene) leads to the same conclusion. There is no discontinuity in the vibrational parts of Cp and alpha on structural unfreezing in the Tg range, and hence the change in Cp and alpha at Tg is almost entirely due to change in the configurational part. Crystallization decreases the vibrational part not because the molecular mobility is lost but because the density increases.  相似文献   

11.
Thermal analysis of polysiloxanes, aromatic polyimide and their blends   总被引:2,自引:0,他引:2  
Low molecular weight poly(dimethylsiloxane) and poly(methylphenylsiloxane) were synthesized and blended with polyimide (PI) at its precursor poly(amic acid) stage. FTIR analysis has proven the retention of polysiloxanes in polyimide after the ultimate curing of blends. Differential scanning calorimetric analysis was performed on polysiloxanes to elucidate the structures present in polymers while thermogravimetric analysis (TGA) was performed on polysiloxanes, polyimide as well as their blends to evaluate the thermal stability and to analyze the effect of polysiloxane incorporation in blends. Blends have shown synergistic improvement as compared to neat polyimide.  相似文献   

12.
Even not being described in the EN 14112 standard, PDSC has been used for the determination of the biodiesel oxidative stability, by OIT and OT measurements. In this study, biodiesel blends were obtained by mixing soybean (BES) and castor (BEM) ethyl esters and its induction periods were measured by Rancimat and PDSC. The blends (BSM X ) showed intermediate values of OSI, OT, and OIT, compared with BES and BEM. Although, the molar fraction of the components varied linearly in BSM X , OSI, OT, and OIT values increased exponentially in relation to the castor biodiesel amount in the blends. Introduction of castor oil biodiesel increased the blend stability, so the BSM30 blend reached the OSI limit of 6 h. OSI, OIT, and OT showed a high-linear correlation, pointing out that PDSC can be used in the analysis of this kind of biodiesel, with a smaller sample and analysis time, as compared to Rancimat. The use of biodiesel blends was a good alternative in the correction of the oxidative stability of the final product without the need of antioxidant addition.  相似文献   

13.
Poly(ethylene oxide) and poly[bis[2-(2′-methoxyethoxy) ethoxy] phosphazene], PEO/MEEP, polymer blends were investigated by thermal analysis, X-ray diffraction, and atomic force microscopy. MEEP is an amorphous polymer and its semicrystalline blends with PEO showed two distinct glass transitions, whose composition dependence was analysed by the Lodge and McLeish self-concentration model. It appears that an amorphous miscible phase is present in these blends. Excess melting enthalpy was observed for blends with high MEEP concentration. PEO lamellar characteristics exhibited changes as a function of MEEP content, both in X-ray patterns and AFM images that indicated the intercalation of MEEP side chains in the lamellar crystalline structure.  相似文献   

14.
The dependence of the kinetics of crystallization and melting behavior in isotactic polystyrene/poly-o-chlorostyrene-co-p-chlorostyrene (iPS/Po-CIS-co-p-CIS) blends on temperature, thermal history, and blend composition has been investigated. The crystallization rate at a given temperature and copolymer composition decreases with increasing copolymer content in the blend when the samples are premelted. These effects can be ascribed to the reduction of mobility of the crystallizable chains due to the presence of the copolymer and to the decrease in the number of heterogenous iPS nuclei as a result of the premelting process. The Avrami exponent values and the analysis of the blend morphology indicate that the growth mechanism of the crystals is strongly influenced by thermal treatment. There is no measurable change in the melting temperature of iPS in the blends, with composition indicating that, on the basis of the Flory-Huggins approximation of the thermodynamics of polymer mixing, the net interaction parameter at the melting temperature is close to zero. From the comparison of the phase diagram for the isotactic polystyrene-containing blend with that of the atactic-containing blend, it can be concluded that in the amorphous state polystyrene with a regular configuration is slightly less compatible with the P(o-CIS-co-p-CIS) than is polystyrene with random configuration.  相似文献   

15.
16.
Pecularities of deformation of two-phase blends is considered depending on drawing conditions and mechanical properties of each phase. Significant anisotropy of mechanical properties of polymer blends film can take place because of particle orientation of dispersed polymer. This significant anisotropy exists also when there is no orientation of macromolecules in each phase. Possibility is demonstrated to regulate properties of each phase in polymer blends by addition of selective plasticizer which can act only on one polymer phase in two-phase polymer mixture.  相似文献   

17.
Polyacrylonitrile (PAN) nanofibers were applied to metal adsorption. PAN nanofibers (prepared by an electrospinning technique) were chemically modified with amidoxime groups, which are suitable for metal adsorption due to their high adsorption affinity for metal ions. The adsorption of the amidoxime-modified PAN (PAN-oxime) (25% conversion) nanofibers followed Langmuir isotherm. The saturation adsorption capacities for Cu(II) and Pb(II) of 52.70 and 263.45 mg/g (0.83 and 1.27 mmol/g), respectively, indicating that the monolayer adsorption occurred on the nanofiber mats. In addition, over 90% of metals were recovered from the metal-loaded PAN-oxime nanofibers in a 1 mol/L HNO3 solution after 1 h.  相似文献   

18.
A short introduction to polymer-polymer miscibility and to the prediction of the miscibility of polymers is given. The four main types of polymer-modified poly(vinyl chloride) (plastification, impact modification, processing aids and heat deflection temperature modification) are explained by examples. The thermal stability of poly(vinyl chloride) in such blends is discussed; the effectivity of tin-stabilizers may be higher in such blends than in pure poly(vinyl chloride).  相似文献   

19.
Vegetable oil derived fuels for diesel engines are becoming important as alternative to petroleum diesel fuels due to their environmental friendliness and availability. Ignition quality in compression ignition (CI) engines is influenced by thermal characteristics and fuel properties. In this study, the effects of vegetable oil transesterification and vegetable oil–1-butanol-diesel blends on fuel properties, cetane number (CN) and thermal characteristics were experimentally investigated. Methyl esters (biodiesel) and 10% vegetable oil–10% 1-butanol–80% diesel blends were prepared from croton oil (CRO), coconut oil (COO) and jatropha oil (JAO). CN was measured in a CFR F-5 engine, and a thermogravimetric analysis (TG), as well as the determination of fuel properties of vegetable oils, biodiesels and blends was carried out. It can be observed for vegetable oils that they possess low volatility characteristics, low CN and high viscosity different from those of biodiesels, blends and diesel fuel. It was observed that biodiesels and blends exhibit similarities with diesel in the fuel characteristics, CN and TG curves.  相似文献   

20.
Rheological, thermal, and mechanical properties of polypropylene homo polymer (PPH)/amorphous poly alpha olefin (APAO) blends as a function of molecular weight, comonomer type and content, and blend composition have been investigated. Homo APAO grade showed better compatibility than copolymerized ones in terms of rheological and thermal properties. The mechanical strength showed strong dependence on APAO content and type, and the impact strength and melt index rapidly increased for certain types of APAO at and above 30 wt%. On comparison with commercially used PPH/ethylene–propylene rubber (EPR) blend system, it is supposed that PPH/APAO blend can be successfully used in thermoplastic polyolefin applications. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号