首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 921 毫秒
1.
This paper presents the adaptive anti-synchronization of a class of chaotic complex nonlinear systems described by a united mathematical expression with fully uncertain parameters. Based on Lyapunov stability theory, an adaptive control scheme and adaptive laws of parameters are developed to anti-synchronize two chaotic complex systems. The anti-synchronization of two identical complex Lorenz systems and two different complex Chen and Lü systems are taken as two examples to verify the feasibility and effectiveness of the presented scheme.  相似文献   

2.
This paper brings attention to hyperchaos anti-synchronization between two identical and different hyperchaotic systems by using adaptive control. The sufficient conditions for achieving the anti-synchronization of two hyperchaotic systems are derived based on Lyapunov stability theory. An adaptive control law and a parameter update rule for unknown parameters are introduced such that the hyperchaotic Chen system is controlled to be the hyperchaotic Lü system. Theoretical analysis and numerical simulations are shown to verify the results.  相似文献   

3.
The single input linear feedback control for synchronizing two identical new 3D chaotic flows reported by Li et al. [X.F. Li, K.E. Chlouverakis, D.L. Xu, Nonlinear dynamics and circuit realization of a new chaotic flow: a variant of Lorenz, Chen and Lü, Nonlinear Analysis RWA 10 (4) (2009) 2357-2368] is proposed in this paper. Sufficient conditions of synchronization are obtained for both linear feedback and adaptive control approaches. The problem of adaptive synchronization between two nearly identical chaotic systems with unknown parameters is also studied. Based on the Lyapunov stability theory, two kinds of single input adaptive synchronization controllers are designed and the adaptive parameter update laws are developed.  相似文献   

4.
This paper treats the adaptive control and synchronization of the coupled dynamo system with unknown parameters. Based on the Lyapunov stability technique, an adaptive control laws are derived such that the coupled dynamo system is asymptotically stable and the two identical dynamo systems are asymptotically synchronized. Also the update rules of the unknown parameters are derived. Finally, numerical simulation of the controlled and synchronized systems are presented.  相似文献   

5.
This paper is involved with the adaptive modified function projective synchronization (MFPS) problem of hyperchaotic systems with unknown parameters. Based on the Lyapunov stability theorem and adaptive control method, adaptive controllers and parameters update laws can be presented for the MFPS not only between two identical hyperchaotic systems but particularly also between two different hyperchaotic systems with fully unknown or partially unknown parameters. Moreover, the coupling strength can be automatically adapted to a updated law. Numerical simulations are presented to show the effectiveness of the proposed synchronization schemes.  相似文献   

6.
This paper addresses problems of control and synchronization for a new modified hyperchaotic Lü system with uncertain parameters. This new modified uncertain hyperchaotic Lü system is stabilized to its unique unstable equilibrium by using adaptive control. Furthermore, an adaptive control law and a parameter estimation update law are derived to synchronize two identical modified hyperchaotic Lü systems with uncertain parameters. Numerical examples are proposed to demonstrate and verify the theoretical analysis.  相似文献   

7.
The present article aims to study the projective synchronization between two identical and non?identical time?delayed chaotic systems with fully unknown parameters. Here the asymptotical and global synchronization are achieved by means of adaptive control approach based on Lyapunov–Krasovskii functional theory. The proposed technique is successfully applied to investigate the projective synchronization for the pairs of time?delayed chaotic systems amongst advanced Lorenz system as drive system with multiple delay Rössler system and time?delayed Chua's oscillator as response system. An adaptive controller and parameter update laws for unknown parameters are designed so that the drive system is controlled to be the response system. Numerical simulation results, depicted graphically, are carried out using Runge–Kutta Method for delay?differential equations, showing that the design of controller and the adaptive parameter laws are very effective and reliable and can be applied for synchronization of time?delayed chaotic systems. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
A robust adaptive sliding control scheme is developed in this study to achieve synchronization for two identical chaotic systems in the presence of uncertain system parameters, external disturbances and nonlinear control inputs. An adaptation algorithm is given based on the Lyapunov stability theory. Using this adaptation technique to estimate the upper-bounds of parameter variation and external disturbance uncertainties, an adaptive sliding mode controller is then constructed without requiring the bounds of parameter and disturbance uncertainties to be known in advance. It is proven that the proposed adaptive sliding mode controller can maintain the existence of sliding mode in finite time in uncertain chaotic systems. Finally, numerical simulations are presented to show the effectiveness of the proposed control scheme.  相似文献   

9.
In this article, a fuzzy adaptive control scheme is designed to achieve a function vector synchronization behavior between two identical or different chaotic (or hyperchaotic) systems in the presence of unknown dynamic disturbances and input nonlinearities (dead‐zone and sector nonlinearities). This proposed synchronization scheme can be considered as a generalization of many existing projective synchronization schemes (namely the function projective synchronization, the modified projective synchronization, generalized projective synchronization, and so forth) in the sense that the master and slave outputs are assumed to be some general function vectors. To practically deal with the input nonlinearities, the adaptive fuzzy control system is designed in a variable‐structure framework. The fuzzy systems are used to appropriately approximate the uncertain nonlinear functions. A Lyapunov approach is used to prove the boundedness of all signals of the closed‐loop control system as well as the exponential convergence of the corresponding synchronization errors to an adjustable region. The synchronization between two identical systems (chaotic satellite systems) and two different systems (chaotic Chen and Lü systems) are taken as two illustrative examples to show the effectiveness of the proposed method. © 2015 Wiley Periodicals, Inc. Complexity 21: 234–249, 2016  相似文献   

10.
Adaptive synchronization of a hyperchaotic system with uncertain parameter   总被引:1,自引:0,他引:1  
This paper addresses the synchronization problem of two Lü hyperchaotic dynamical systems in the presence of unknown system parameters. Based on Lyapunov stability theory an adaptive control law is derived to make the states of two identical Lü hyperchaotic systems with unknown system parameters asymptotically synchronized. Numerical simulations are presented to show the effectiveness of the proposed chaos synchronization schemes.  相似文献   

11.
In this work, the feedback control method is proposed to control the behaviour of Liu chaotic dynamical system. The controlled system is stable under some conditions on the parameters of the system determined by Routh-Hurwitz criterion. This paper also presents the adaptive modified function projective synchronization (AMFPS) between two identical Liu chaotic dynamical systems. Based on the Lyapunov stability theorem, adaptive control laws are designed to achieving the AMFPS. Finally, some numerical simulations are obtained to validate the proposed methods.  相似文献   

12.
This work is involved with switched modified function projective synchronization of two identical Qi hyperchaotic systems using adaptive control method. Switched synchronization of chaotic systems in which a state variable of the drive system synchronize with a different state variable of the response system is a promising type of synchronization as it provides greater security in secure communication. Modified function projective synchronization with the unpredictability of scaling functions can enhance security. Recently formulated hyperchaotic Qi system in the hyperchaotic mode has an extremely broad frequency bandwidth of high magnitudes, verifying its unusual random nature and indicating its great potential for some relevant engineering applications such as secure communications. By Lyapunove stability theory, the adaptive control law and the parameter update law are derived to make the state of two chaotic systems modified function projective synchronized. Synchronization under the effect of noise is also considered. Numerical simulations are presented to demonstrate the effectiveness of the proposed adaptive controllers.  相似文献   

13.
In this paper, a two-degrees-of-freedom Internal Model Control structure is incorporated in production inventory control for a supply chain system. This scheme presents an intuitive and simple parametrization of controllers, where inventory target tracking and disturbance (demand) rejection in the inventory level problems are treated separately. Moreover, considering that the lead times are known, this scheme presents a perfect compensation of the delay making the stabilization problem easier to handle. This control structure is formulated for a serial supply chain in two ways (by using a centralized and a decentralized control approach). The behavior of these inventory control strategies is analyzed in the entire supply chain. Analytical tuning rules for bullwhip effect avoidance are developed for both strategies. The results of controller evaluations demonstrate that centralized control approach enhances the behavior with respect to the inventory target tracking, demand rejection and bullwhip effect in the supply chain systems.  相似文献   

14.
This study addresses the synchronization and adaptive synchronization problems of nuclear spin generator (NSG) systems with unknown system parameters. We show that the NSG system can be synchronized by using drive-response systems. Adaptive control law is applied to achieve the state synchronization of two identical NSG systems. Lyapunov direct method of stability is used to prove the asymptotic stability of solutions for the error dynamical system. Numerical simulation is used to show the effectiveness of the proposed control schemes.  相似文献   

15.
This paper addresses a unified mathematical expression describing a class of chaotic systems, for which the problem of adaptive synchronization between two nearly identical chaotic and hyper-chaotic systems with uncertain parameters is studied. Based on Lyapunov stability theory, a novel adaptive synchronization controller is designed, and the analytic expression of the controller and the adaptive laws of parameters are developed. The controller is simple and systemic, no parameters of the slave system are included in the controller, and, for some specific error systems, the controller can be simplified ulteriorly. New chaotic and a new hyper-chaotic systems with uncertain parameters are taken as the examples to show the effectiveness of the proposed adaptive synchronization method.  相似文献   

16.
This paper deals with the adaptive synchronization of two identical hyperchaotic master and slave systems. The master system and the slave system each consists of two subsystems: a hyperchaotic Chen subsystem and a unified chaotic subsystem. The asymptotic convergence of the errors between the states of the master system and the states of the slave system is proven using Lyapunov theory. Simulation results are presented to illustrate the ability of the control law to synchronize the master and slave systems. Moreover, the proposed control scheme is applied to encrypt and decrypt discrete signals such as digital images where computer simulation results are provided to show that the proposed control law works well.  相似文献   

17.
This paper presents a systematic design procedure to synchronize two identical generalized Lorenz chaotic systems based on a sliding mode control. In contrast to the previous works, this approach only needs a single controller to realize synchronization, which has considerable significance in reducing the cost and complexity for controller implementation. A switching surface only including partial states is adopted to ensure the stability of the error dynamics in the sliding mode. Then an adaptive sliding mode controller (ASMC) is derived to guarantee the occurrence of the sliding motion even when the parameters of the drive and response generalized Lorenz systems are unknown. Last, an example is included to illustrate the results developed in this paper.  相似文献   

18.
This work presents chaos synchronization between two different hyperchaotic systems using adaptive control. The sufficient conditions for achieving synchronization of two high dimensional chaotic systems are derived based on Lyapunov stability theory, and an adaptive control law and a parameter update rule for unknown parameters are given such that generalized Henon–Heiles system is controlled to be hyperchaotic Chen system. Theoretical analysis and numerical simulations are shown to verify the results.  相似文献   

19.
A novel robust control scheme is proposed to realize anti-synchronization of two different hyperchaotic systems with external uncertainties. By introducing a compensator, the novel robust control scheme is developed based on nonlinear control and adaptive control, which can eliminate the influence of uncertainties effectively and achieve adaptive anti-synchronization of the two different hyperchaotic systems globally and asymptotically with an arbitrarily small error bound. The adaptive laws of the unknown parameters are given, and the sufficient conditions are derived as well. Finally, numerical simulations are provided to verify the effectiveness and robustness of the proposed control scheme.  相似文献   

20.
不确定混沌系统的混合投影同步   总被引:1,自引:1,他引:0  
贾贞  陆君安  邓光明 《数学杂志》2011,31(2):275-283
本文研究了一类不确定混沌(超混沌)系统的混合投影问题.利用自适应方法和Lyapunov稳定性理论,获得了两个恒同或不同混沌系统实现混沌投影同步的一般方法.最后,数值仿真的结果验证了方法的有效性和鲁棒性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号