首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 824 毫秒
1.
Among polyamide based blends, PA/PP alloys show interesting technological properties due to low moisture absorption. A model class of PA6/PP homopolymer blends, compatibilized through the addition of PP-g-MA is described in the present work; the experimentally obtained morphologies are related to predictive equations for co-continuity, at given rheological conditions. PP/compatibilizer ratio = 4/1 is found to impart an optimum level of phase dispersion. Moisture absorption, dimensional stability, mechanical properties and morphology are related with blend composition.  相似文献   

2.
Binary blends of thermoplastic polymers, one being a polyolefin (high density polyethylene) and the other a bio-based polymer (cellulose acetate butyrate) were prepared with various components proportions. No compatibiliser was used. Depending on blend composition, different morphologies were obtained, from fine nodular to co-continuous. Blends viscoelastic and mechanical properties were studied in details in all range of compositions. The results obtained were interpreted using a careful analysis of the viscoelastic properties of the initial components and classical approaches developed for immiscible blends. Except the blends containing low amount of cellulose acetate butyrate finely dispersed in polyethylene, all other blends viscoelastic and mechanical properties follow the additive mixing rule.  相似文献   

3.
聚合物共混物相容性的研究进展   总被引:3,自引:0,他引:3  
相容性聚合物共混物由于其优异的复合性能已成为新材料的主要研究方向。但许多共混物是互不相容的 ,因此必须改善它们的相容性。文章综述了聚合物共混物相容性研究的现状与发展 ,介绍了各种增容方法及其应用  相似文献   

4.
Polystyrene/polybutadiene (PS/PB) blends with different plastic/rubber ratios were prepared by melt mixing. A detailed investigation on phase morphology development of 30/70 wt.% PS/PB blends as a function of processing conditions was quantitatively analyzed. Morphology is developed at the initial stages of mixing. Suitable blending conditions resulting in optimum phase morphology were obtained at 180 °C, 60 rpm and at 8 min mixing time. Phase morphologies of the blends were also studied as a function of composition. Mechanical properties of the blends were measured. Attempts were made to correlate the morphologies with the properties. Parallel-Voids model has been applied to characterize phase morphology of these blends.  相似文献   

5.
通过多单体熔融接枝的方法制备出了具有较高接枝率的ABS接枝物 (ABS g (MAH co St) ) ,并对其接枝机理进行了初步探讨 .研究表明 ,MAH、St接枝ABS时 ,反应主要发生在ABS中聚丁二烯的双键部位 .同时 ,当MAH与St的用量比约为 1:1时接枝率达到最高 .ABS g (MAH co St)作为尼龙 6 (PA6 ) ABS共混体系相容剂起到了良好的增容效果 .实验证明 ,相容剂使用前后 ,共混物的相区尺寸由几十 μm减小到 1μm以下 ,且分布更加均匀 ;共混物的拉伸强度和冲击强度等力学性能也同时得到均衡改善 .  相似文献   

6.
The mechanical properties and dynamic mechanical properties of blends composed of Nylon 6 and poly(butylenes terephthalate)(PBT),with styrene/maleic anhydride(SMA)as compatibilizer,were studied.The observation on the morphologies of the etched surfaces of the cryogenically fractured specimens via scanning electron microscopy(SEM)demonstrated that in the compatibilized Nylon 6/PBT blends,there exists a finer and more uniform dispersion induced by the in-situ interfacial chemical reactions during the preparation than that in the corresponding uncompatibilized blends.On the other hand,the overall mechanical properties of the compatibilized blends could be remarkably improved compared with those of the uncompatibilized ones.Moreover,increasing the amount of the compatibilizer SMA leads to a more efficient dispersion of the PBT phase in Nylon 6/PBT blends.Furthermore,there exists an optimum level of SMA added to achieve the maximum mechanical properties.As far as the mechanism of this reactive compatibilization is concerned,the enhanced interfacial adhesion is necessary to obtain improved dispersion,stable phase morphology,and better mechanical properties.  相似文献   

7.
测定了聚氯乙烯(PVC)-丁腈橡胶(NBR-29)-氯丁橡胶(CR)三元共混物的冲击性能和应力-应变行为,用动态力学分析、扫描电镜和透射电镜研究了共混物的相容性和形态结构,结果表明,NBR-29对PVC,CR有良好的增容作用,三元共混物是部分相容的二相体系,具有良好的抗冲击性能。  相似文献   

8.
SEP对PP/PS共混物的增容作用   总被引:3,自引:0,他引:3  
游长江 《广州化学》2001,26(3):7-14
研究了苯乙烯 -乙烯 /丙烯二嵌段共聚物 (SEP)对聚丙烯 /聚苯乙烯 (PP/PS)共混物的形态和力学性能的影响。结果表明 ,SEP在PP/PS共混物中作为增容剂 ,降低了分散相的聚结 ,减小了分散相的平均粒子尺寸 ,大大改变了共混物的形态 ,提高了共混物的力学性能 ,对PP/PS( 2 0 /80 )共混物的增容作用较为显著  相似文献   

9.
Transmission electron microscopy (TEM) was used to examine the morphology of blends of nylon 6 and polypropylene (PP) containing various maleated polypropylenes (PP-g-MA). The size of the dispersed polypropylene particles decreases as the content of maleic anhydride in the PP-g-MA increases for binary blends of nylon 6 and the maleated polypropylenes. Ternary blends of nylon 6, PP, and PP-g-MA show morphologies that depend on the content of maleic anhydride of the PP-g-MA and on the miscibility of PP and PP-g-MA. Blends where PP and PP-g-MA are immiscible show a bimodal distribution of particle sizes. Miscibility of the PP and PP-g-MA was determined by TEM using a special staining technique. Experimental observations of miscibility were further corroborated by thermodynamic calculations. The morphology of the ternary blends was also found to be dependent on the ratio of PP/PP-g-MA. By changing this ratio it was possible to induce drastic changes of morphology, going from a continuous nylon 6 phase to a continuous PP phase at a fixed composition. The mechanical properties of these blends were found to be dependent on their morphology. ©1995 John Wiley & Sons, Inc.  相似文献   

10.
Powder blends of LDPE with cellulose, ethyl cellulose, starch, chitin, and chitosan have been prepared under shear deformation in a rotor disperser at different initial-component ratios. The composition of powder fractions is identical to the original composition of the blends. The studied polymer blends demonstrate high mechanical characteristics. X-ray diffraction analysis and DSC studies show that the blending of LDPE with polysaccharides under shear deformations results in changes in the polymer structure and leads to a decrease of their degree of crystallinity. The maximum intensity of mold fungi growth is observed in starch-LDPE (50: 50, wt/wt) and chitin-LDPE (50: 50, wt/wt) blends.  相似文献   

11.
The thermal and mechanical properties of collagen/chitosan blends before and after UV irradiation have been investigated using thermal analysis and mechanical (Instron) techniques. Comparisons were made with the thermal and mechanical properties of both collagen and chitosan films. Air-dried collagen, chitosan and collagen/chitosan films were exposed to UV irradiation (wavelength 254 nm) for different time intervals. Thermal properties of collagen/chitosan blends depend on the composition of the blend and are not significantly altered by UV irradiation.Mechanical properties such as ultimate tensile strength and ultimate percentage of elongation were much better for collagen films than for collagen/chitosan films. The results have shown that the mechanical properties of the blends were greatly affected by the duration of UV irradiation. Ultimate tensile strength and ultimate percentage elongation decreased after UV irradiation of the blend. Increasing UV irradiation leads to an increase in Young's modulus of the collagen/chitosan blend.  相似文献   

12.
Poly(lactic acid) (PLA) and polycarbonate (PC) blends were prepared by melt processing with a twin-screw extruder. Ethylene-maleic anhydride-glycidyl methacrylate terpolymer (EMG) as compatibilizer and talc as nucleation agent were added in PLA/PC blends. The effect of EMG and talc on the mechanical properties including tensile, flexural, Izod notched impact properties and heat deflection temperature (HDT) of PLA/PC blends were investigated. The morphologies were observed by scanning electron microscopy (SEM). The crystalline behavior of PLA/PC blends was analyzed by differential scanning calorimetry (DSC) and X-ray diffraction (XRD). The nanoscale mechanical properties of PLA/PC blends were investigated by atomic force microscope (AFM). The results showed that the addition of EMG and talc simultaneously with annealing treatment is the most effective process.  相似文献   

13.
Three different biodegradable polyesters, namely, polycaprolactone (PCL), polybutylene succinate (BIONOLLE), and a copolyester of adipic acid, terephthalic acid, and 1,4‐butanediol (EASTAR) were melt‐blended using a twin‐screw extruder. The percentage composition of each of the aforementioned polymers was varied to obtain different blends, and the mechanical properties were evaluated. Selected blends showed significant improvement in tensile strength as compared with the individual polymers used to prepare the blend. The compatibility between the polymer phases was examined via Fourier transform infrared (FTIR) and nuclear magnetic resonace (NMR) spectroscopy as well as dynamic mechanical analysis. FTIR and NMR data confirmed the occurrence of hydrogen‐bonding and ester‐interchange reactions. Thermal properties and changes in crystallinity of the blends were examined with differential scanning calorimetry and X‐ray diffraction. A considerable increase in crystallinity was shown by the blend system containing BIONOLLE/PCL. The morphology of the blends was observed and correlated to the improved mechanical properties of the blend system. Results revealed an intermediate multiphase system in which a significant degree of mixing was achieved through the chemical interaction of the functional groups present, while using the twin‐screw extruder. Significant improvement in mechanical properties of some blends was observed, and information about the miscibility of these polyesters is provided. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2003–2014, 2002  相似文献   

14.
In the present study, we have investigated the miscibility, morphology and mechanical behavior of poly(methyl methacrylate) (PMMA) blends with a series of poly(styrene-co-maleic anhydride) (SMA) copolymers containing varying amounts of maleic anhydride (MA) content (from 8 to 26%). The experimental findings have been substantiated by the modeling studies to gain fundamental understanding of the observed phenomena with respect to the miscibility of the PMMA and SMA blends of a given MA content. The morphological differences, molecular weights, domain sizes and mechanical behavior of the blends at a given ratio of PMMA and copolymers have been investigated and a correlation has been made between the morphological understanding to the molecular weights and mechanical properties. The results indicate that the PMMA/SMA blends are miscible only at a certain MA content providing transparent PMMA/SMA blends without affecting any of the enabling properties of PMMA that are of commercial interest through a facile melt mixing process. The surface hardness and % recovery (nano-indentation) of these blends were evaluated as well to gain fundamental understanding of the surface characteristics and mechanicals of the blends.  相似文献   

15.
An extremal dependence of the intrinsic viscosity of poly(vinyl alcohol) blends with sodium carboxymethyl cellulose and polyacrylamide on composition has been established. A correlation between the viscosity properties of solutions and mechanical properties of films made of sodium carboxymethyl cellulosepoly(vinyl alcohol) blends is observed that is indicative of the interpolymer interaction in these systems. The obtained regularities can be used to produce high-modulus coordination-crosslinked gels based on these blends.  相似文献   

16.
Poly(lactic acid) (PLA) and polypropylene (PP) blends of various proportions were prepared by melt-compounding. The miscibility, phase morphology, thermal behavior, and mechanical and rheological properties of the blends were investigated. The blends were immiscible systems with two typical morphologies, spherical droplet and co-continuous, and could be obtained at various compositions. Complex viscosity, storage modulus and loss modulus depend on the PP content. Thermal degradation of all blends led to two weight losses, for PLA and PP. The incorporation of PP improved the thermal stability of the blend. The effect of compatibilizer (ethylene-butyl acrylate-glycidyl methacrylate terpolymer, EBA-GMA) on the morphology and mechanical properties of 70/30 w/w PLA/PP blends was investigated. The tensile strength of these blends reached a maximum for 2.5 wt% EBA-GMA, and impact strength increased with increasing EBA-GMA content, suggesting that EBA-GMA is an effective compatibilizer for PLA/PP blends.  相似文献   

17.
The effects of styrene-ethylene/propylene (SEP) diblock copolymer on the morphology and mechanical propertiesof polypropylene/polystyrene (PP/PS) blends were investigated. The results showed that SEP diblock copolymer, acting as acompatibilizer in PP/PS immiscible blends, can diminish the coalescence of the dispersed particles, reduce their averageparticle size, change their phase morphologies significantly, and increase the mechanical properties. It was found that SEP has better compatibilization effects on the PP/PS (20/80) blends.  相似文献   

18.
《European Polymer Journal》1985,21(2):187-193
Natural weathering, photo-oxidative and thermo-oxidative degradation have been compared for poly(vinyl chloride) (PVC) and poly(isobutylene) (PIB) and nine of their blends covering the entire composition range. The degradation techniques used include heating in an air oven at 100°, u.v. irradiation and natural weathering. Studies on the morphology of the blends show that the state and mode of dispersion of the elastomer in films of the blend are influenced by composition. PIB is substantially less stable than PVC and does not act as a good modifier for PVC in freshly prepared samples. Considerably improved mechanical properties were obtained when the polyblends were partially degraded presumably because of the interactions between the polymers. The changes in the chemical properties were monitored by i.r. measurements. The presence of PIB in PVC up to 20% gave optimum stabilization to PVC whereas small amounts of PVC in PIB destabilized PIB considerably. The presence of PIB in a PVC-PIB blend leads to considerable suppression of dehydrochlorination at 100°. The blends became more stable than the homopolymers. The effect of PIB is chiefly to stabilize PVC; a mechanism is proposed. Equations have been developed to allow evaluation of the role of PIB as an effective stabilizer for PVC.  相似文献   

19.
The system formed by isotactic polypropylene (iPP) and hydrogenated oligo(cyclopentadiene) (HOCP) is investigated in order to study the influence of the composition and thermal history on the morphology, phase structure, miscibility and thermal and mechanical properties of the blends. A phase diagram presenting both the lower and the upper cloud point curves is proposed. It is shown that these blends assume different morphologies and consequently present diverse thermal and dynamic-mechanical behaviours depending on quenching processes from one-phase region or two-phase region. From the analyses of the results of optical microscopy, WAXS, DSC and DMTA techniques it is found that: blend films, quenched from the melt of one-phase region to room temperature, contain one amorphous phase and iPP in smectic form; moreover they are transparent and possess a reduced permeability to oxygen and aroma; conversely when the samples are quenched from the melt of two-amorphous phase region there is the formation of two amorphous phases (the iPP-rich phase and the HOCP-rich phase) and at room temperature the iPP crystallizes in the monoclinic α form.  相似文献   

20.
The core-shell structured grafted copolymer particles of polybutadiene grafted polymethyl methacrylate (PB-g-PMMA, MB) were prepared by emulsion polymerization. The MB particles were used to modify poly (vinyl chloride) (PVC) by melt blending. The mechanical properties of the PVC blends were investigated. The micro-morphology of the PVC blends was observed by scanning electron microscopy (SEM). The results indicated that the samples with the best impact strength could be obtained when the core-shell weight ratio of PB to PMMA is lower than 93:7, the mechanical properties correlated well with SEM morphologies, the addition of modifier with the ratio core to shell of 93:7 could reduce the domain size of the dispersed phase. Furthermore, the compatibility and properties of the blends were greatly enhanced and improved. The modifier particles could be well dispersed in the PVC matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号