首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Abstract— During the reaction HO2+ HO2 (or O2-) = H2O2+ O2 in aqueous solution, no luminescence in the region 620–720 nm, expected if the product O2 were formed in a singlet state, could be detected. If any singlet O2 is formed, its yield must be less than 10%. Faint luminescence, sometimes found at shorter wavelengths, was shown to arise from reaction of HO2 with impurities in the reagents present.  相似文献   

4.
Abstract. The photooxidation of tetracyclone yielding dibenzoyl stilbene was studied by means of an 18O labelling method recently used to study heme catabolism. Unlike heme degrading systems, the photooxidation of tetracyclone was found to proceed by a one-molecule mechanism whereby both oxygen atoms in dibenzoyl stilbene are derived from the same molecule of molecular oxygen. This is evidence for a dioxobridged intermediate.  相似文献   

5.
Abstract— In aqueous solutions α-hydroxyalkylperoxyl radicals undergo a spontaneous and a base catalysed HO2 elimination. From kinetic deuterium isotope effects, temperature dependence, and the influence of solvent polarity it was concluded that the spontaneous reaction occurs via an HO2 elimination followed by the dissociation of the latter into H+ and O2-. The rate constant of the spontaneous HO2 elimination increases with increasing methyl substitution in α-position ( k (CH2(OH)O2) < 10s-1 k (CH3CH(OH)O2) = 52s-1 k ((CH3)2C(OH)O2) = 665 s-1). The OH- catalysed reaction is somewhat below diffusion controlled. The mixture of peroxyl radicals derived from polyhydric alcohols eliminate HO2 at two different rates. Possible reasons for this behaviour are discussed. The mixture of the six peroxyl radicals derived from d -glucose are observed to eliminate HO2 with at least three different rates. The fastest rate is attributed to the HO2 elimination from the peroxyl radical at C-l ( k > 7000s-1). Because of the HO2 eliminations the peroxyl radicals derived from d -glucose do not undergo a chain reaction in contrast to peroxyl radicals not containing an α-OH group. In competition with the first order elimination reactions the α-hydroxylalkylperoxyl radicals undergo a bimolecular decay. These reactions are briefly discussed.  相似文献   

6.
Abstract— Guanosine-2-14C and guanosine-8-14C were subjected, under similar environmental conditions, to oxidation either by radiofrequency-discharge-generated singlet oxygen or by a methylene-blue-sensitized photodynamic reaction. The reaction products in both cases were compared chromatographically. The product distributions were not identical, indicating differing modes of oxidation in these two systems. It is suggested that both Type I and Type II oxidation mechanisms are operative in the photodynamic system, whereas only Type II-like reactions occur in the radio-frequency-discharge system.  相似文献   

7.
Abstract— A mutant of Chlamydomonas reinhardtii (NL–11) isolated from a wild type (137c+) was inactivated in the light in the presence of methionine at concentrations where the wild type was not inactivated. The inactivation was suppressed by either catalase or superoxide dismutase (SOD). Light-induced H2O2 formation and nitroblue tetrazolium (NBT) reduction inNL–11 were greater than those in the wild type. Methionine stimulated both the H2O2 formation and the NBT reduction inNL–11 as well as the wild type. The light-induced NBT reduction inNL–11 in the presence of methionine was partially suppressed by externally added SOD suggesting the participation of O-2. These results suggest that the hypersensitivity ofNL–11 to methionine in the light is due to stimulated formation of H2O2 and O-2.  相似文献   

8.
Abstract A rubrene derivative has been synthesized as a new trap for singlet oxygen in aqueous solution. Photooxygenation and evolution of the endoperoxide under various conditions have been investigated. This trap may be used either as a colorimetric test or as a specific one by isolation of the endoperoxide.  相似文献   

9.
Abstract —In the model of Forbush et at. (1971) the observed damping of the flash yield sequence of photosynthetic O2 evolution was related to a certain percentage of ‘misses’ (α; i.e. centers not converted). The possibility of a miss was supposed to be equal for all states S0.1,2,3. We propose a new model and a new recurrence law that gives better quantitative agreement with the O2 yield oscillations observed in Chlorella during a sequence of flashes. We find a better fit with all experimental results by assuming very unequal misses; the misses occur nearly exclusively on S2 (and also sometimes on S3). In the simpler case of only one miss on one state, half of S2 exists as an inactive form S2+- because it is in apparent equilibrium with pool A. The active form of S2 is converted to S3 in a flash and the unchanged inactive form S2+- explains the miss: S 1 hvS2+-=S2hvS3 (S2+- is a transition state between S1 to S2 associated with Q-). In the dark, the apparent equilibrium constant KA between pool A and Q (i.e. S0, S1 in the dark) is very large; this explains why there is no miss on these states. In light, the experimental value of KA between pool A and Q (i.e. S2, S3 in the light) is 1, and this explains why the misses are large for states S2, S3; i.e., S2+-/S2- 1 and sometimes S3+-/S3?0–1. This new model predicts that the total number of active states ΣSi=S0+S1+S2+S3 is an oscillating function of the flash number. This sum 2S, is also the number of trapping centers for excitons. As fluorescence is proportional to excitons that are not trapped, our model explains why the fluorescence oscillates as a function of the flash number. We find also that the initial rates of O2 evolution after (n - 1) flashes vs the 02 yield of the nth flash are not exactly on a straight line, which also favors our model.  相似文献   

10.
Abstract— The rate constant for quenching of 1O2 by azide ion in water was determined to be (5.0 ± 0.4) × 108 M −1 s−1 using a variety of sensitizers (including humic acids) and 1O2 acceptors. The apparent second-order rate constant decreases with pH below pH 5.5 in accordance with the protonation of azide ion to form hydrazoic acid (p K a= 4.6). Quenching by hydrazoic acid is at least 2 orders of magnitude slower than by azide ion. Greater than 99% of all interactions between 1O2 and azide ion involve physical quenching rather than chemical reaction. Humic acid triplets are not significantly quenched by azide ion at concentrations less than 2 m M , allowing azide ion quenching to be used as a diagnostic test for the intermediacy of 1O2 in photosensitized oxidations in natural surface waters.  相似文献   

11.
12.
13.
Photoirradiation of 2-benzoylamino-Δ2-thiazoline in outgassed toluene and cyclohexane solutions leads to N-ethyl-N'-benzoyl thiourea after a C-S bond cleavage in the thiazohne group. This photoreaction occurs from the first excited triplet state of the 2-amino-Δ2-thiazoline derivative.  相似文献   

14.
Abstract— Mercury in contact with oxygen is rapidly removed from the gas phase when irradiated with the 253.7 run resonance line. The final, steady-state concentration of mercury depends on the total pressure, the mol % of oxygen, and the presence (or absence) of mercury droplets in the reaction cell. The effect of oxygen on the mercury photosensitized formation of allene from methylenecyclobutane and trans -2-butene from cis -2-butene at room temperature was investigated. After correction for competitive quenching, collisional deactivation of the excited methylenecyclobutane, and decreased absorption (due to mercury depletion), the maximum decrease in the allene yield was only 12.3%. This decrease could be caused by the reaction of oxygen atoms or ozone with the product allene. In most of the experiments with mercury-oxygen- cis -2-butene mixtures, the corrected quantum yield of the trans -isomer is unchanged from the yield in the absence of oxygen (0.50). Thus oxygen cannot be used to detect the participation of triplet state molecules in mercury photosensitized reactions.  相似文献   

15.
Abstract— The role of chloride in photosynthetic oxygen evolution was investigated by means of thermoluminescence measurements. It was found that chloride depletion in isolated chloroplasts almost completely abolished the B1 thermoluminescence band (S3QB recombination) but diminished only slightly the amplitude of the B2 band (S2QB recombination). The B2 band could be excited to full intensity by the first flash of a flash series and subsequent flashes caused no further change in the amplitude of the band. These observations suggest a block in the S2→S3 transition of the water-splitting system in chloride-depleted chloroplasts. Readdition of chloride provided evidence that the inhibitory effect of chloride removal is reversible.  相似文献   

16.
Abstract— Photolysis of naphthalene on the surface of SiO2 under an atmosphere of air produces phthalic acid as the only major photoproduct, accounting for 49%o of the consumed naphthalene. Photolysis on Al2O3 also produces phthalic acid, in 31% yield. Photolysis of 1 -methylnaphthalene on SiO2 proceeds under similar conditions to produce 2-acetylbenzoic acid (35%) as the major photoproduct with the production of a small amount of I-naphthaldchyde (6%). 1-Cyanonaphthalene does not photooxidize under similar conditions. The presence of oxygen is necessary for the photodecomposition of naphthalene and 1-methylnaphthalene to proceed. Superoxide formed from the photolysis of naphthalene at the SiO2/air interface is readily observed by electron paramagnetic resonance spectroscopy. In the absence of naphthalene no superoxide is observed. A mechanism involving electron transfer from the S1 state of the naphthalene to O2 is proposed on the basis of these observations and related literature precedent.  相似文献   

17.
beta-Crystallins (beta 1-, beta 2- and beta 3-crystallin) comprise nearly half the protein of the human lens. The effect of near-UV radiation, which is one of the possible risk factors in cataract formation, on the beta-crystallins is investigated in this study. Protein intersubunit crosslinking, change in charge of the protein subunits to more acidic species and changes in protein tertiary structure (conformation) by 300 nm irradiation are reported. The fluorescence yield of protein tryptophan residues decreases by 300 nm irradiation. There is an increase in nontryptophan fluorescence (lambda cx 340 nm, lambda cm 400-600 nm), and in protein absorption at 340 nm, due to the formation of tryptophan photooxidation products. Both tryptophan and its oxidation products can be photoexcited by 300 nm irradiation and the latter are known to be good photosensitizers. The results provide evidence for the generation of H2O2 in the irradiated human beta-crystallin solutions by the Type I photosensitizing action of the chromophores absorbing at 300 nm. The H2O2 is generated via the intermediate production of O2 anion; the latter spontaneously dismutates to H2O2, presumably via O2- protein interactions. The amount of H2O2 generated per absorbed photon is compared for various solutions of beta 1-, beta 2- and beta 3-crystallins from human lenses of different age.  相似文献   

18.
THE ROLE OF O2- IN THE CHEMILUMINESCENCE OF LUMINOL*   总被引:1,自引:0,他引:1  
Abstract— The chemiluminescence of luminol in buffered aqueous solutions is inhibited by superoxide dismutase. This occurs whether the luminescence is induced by ferricyanide, persulfate, hypochlorite, or by the action of xanthine oxidase on xanthine. Since superoxide dismutase inhibits reactions which involve O2-, we conclude that this radical is a constant factor in the chemiluminescence of luminol in aqueous solutions. The kinetics of light production are discussed in terms of hypothetical mechanisms that fit the available data. The strong luminescence of luminol in aprotic solvents or in aqueous systems containing relatively high concentrations of H2O2 could not be explored in this way, because superoxide dismutase is inactive under such conditions.  相似文献   

19.
Abstract— The spectra and molar absorbances of the HO2 and O2- free radicals have been redetermined in aqueous formate solutions by pulse and stopped-flow radiolysis as well as by 60Co gamma-ray studies. The extinction coefficients at the corresponding maxima and 23°C are 225= 1400 ± 80 M -1 cm-1 and 225= 2350 ± 120 M -1 cm-1 respectively. Reevaluation of earlier published rate data in terms of the new extinction coefficients yielded the following rate constants for the spontaneous decay of HO2 and O2-: K Ho2+HO2= (8.60 ± 0.62) × 105 M -1 s-1; K Ho2+O2-= (1.02 ± 0.49) × 108 M -1 s-1; K Ho2+O2- < 0.35 M -1 s-1. For the equilibrium HO2→ O2-+ H+ the dissociation constant is K Ho2= (2.05 ± 0.39) × 10-5 M or p K HO2= 4.69 ± 0.08. G (O2-) has been evaluated as a function of formate concentration.  相似文献   

20.
Abstract— 2-Nitropropane dioxygenase (EC 1. 13. 11) of the yeast Hansenula mrakii catalyzes the oxygenative denitrification of 2-nitropropane as follows:

The enzyme is significantly inhibited by superoxide dismutase and various scavengers for superoxide such as cytochrome c , epinephrine, thiols and polyhydric phenols. The scavengers added to the reaction mixture were oxidized or reduced. The addition of superoxide dismutase and the omission of 2-nitropropane or oxygen prevented the oxidation and the reduction of the scavengers. The enzyme catalyzes the formation of nitrite from 2-nitropropane by KO2 added anaerobically.
One mole of NADH is bound per mole of the enzyme and predominantly the pro-R hydrogen of bound NADH is transferred to superoxide formed enzymatically or provided externally. The enzyme shows incomplete stereospecificity for hydrogen transfer from NADH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号