首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We study localized bulging of a cylindrical hyperelastic tube of arbitrary thickness when it is subjected to the combined action of inflation and axial extension. It is shown that with the internal pressure P and resultant axial force F viewed as functions of the azimuthal stretch on the inner surface and the axial stretch, the bifurcation condition for the initiation of a localized bulge is that the Jacobian of the vector function (P,F) should vanish. This is established using the dynamical systems theory by first computing the eigenvalues of a certain eigenvalue problem governing incremental deformations, and then deriving the bifurcation condition explicitly. The bifurcation condition is valid for all loading conditions, and in the special case of fixed resultant axial force it gives the expected result that the initiation pressure for localized bulging is precisely the maximum pressure in uniform inflation. It is shown that even if localized bulging cannot take place when the axial force is fixed, it is still possible if the axial stretch is fixed instead. The explicit bifurcation condition also provides a means to quantify precisely the effect of bending stiffness on the initiation pressure. It is shown that the (approximate) membrane theory gives good predictions for the initiation pressure, with a relative error less than 5%, for thickness/radius ratios up to 0.67. A two-term asymptotic bifurcation condition for localized bulging that incorporates the effect of bending stiffness is proposed, and is shown to be capable of giving extremely accurate predictions for the initiation pressure for thickness/radius ratios up to as large as 1.2.  相似文献   

2.
Recent studies on localized bulging in inflated membrane tubes have shown that the initiation pressure for the onset of localization is determined through a bifurcation condition. This kind of localization has also been shown to be much more sensitive to geometrical and material imperfections than classical sub-critical bifurcation into periodic patterns. We use these results to show that the initial formation of aneurysms in human arteries may also be modeled as a bifurcation phenomenon. This bifurcation interpretation could provide a theoretical framework under which different mechanisms leading to, or reducing the risk of, aneurysm formation can be assessed in a systematic manner. In particular, this could potentially help in assessing the integrity of aneurysm repairs.  相似文献   

3.
The finite element method is used to numerically simulate localized necking in aluminum alloy tube under internal pressure. The measured electron backscatter diffraction (EBSD) data are directly incorporated into the finite element model and the constitutive response at an integration point is described by the single crystal plasticity theory. The tube is assumed sufficiently long, so that length changes as well as the end effects can be ignored and a plane strain analysis can be performed. Localized necking is assumed to be associated with surface instability, the onset of unstable thinning. It is demonstrated that such a surface instability/necking is the natural outcome of the present approach, and an artificial initial imperfection required by other approaches is not necessary in the present analysis. The effects of spatial grain orientation distribution, material strain rate sensitivity, work hardening, and initial surface topography on necking are discussed. It is found that localized necking depends strongly on both the initial texture and its spatial orientation distribution, while the initial surface topography has a negligible effect on necking.  相似文献   

4.
Bifurcations of circular cylindrical elastic tubes subjected to inflation combined with axial loading are analysed. Membrane tubes are considered in detail as a background to the more difficult analysis of thickwalled tubes described in the companion paper (Part II). Our results for membranes reinforce and extend those given by R.T. Shield and his co-workers.Two modes of bifurcation are investigated: firstly, a bulging (axisyrmmetric) mode; secondly, a prismatic mode in which the cross-section of the tube becomes non-circular. Necessary and sufficient conditions for the existence of modes of either type are given in respect of an arbitrary (incompressible isotropic) form of elastic strain-energy function. For a closed tube with a fixed axial loading many features of the results have close parallels with recent findings by D.M. Haughton and R.W. Ogden for spherical membranes. On the other hand, some results for tubes with fixed ends have no such parallel. In particular, bifurcation may, under certain conditions, occur before the inflating pressure reaches a maximum. A combination of the two modes is interpreted in terms of bending for a tube under axial compression, and the relative importance of the bending and bulging modes is discussed in relation to the length to radius ratio of the tube. The analytical results are illustrated for specific forms of strain-energy function. Corresponding analysis is given for thick-walled tubes in Part II.  相似文献   

5.
Forlong, ductile, thick-walled tubes under internal pressure instabilities and final failure modes are studied experimentally and theoretically. The test specimens are closed-end cylinders made of an aluminum alloy and of pure copper and the experiments have been carried out for a number of different initial external radius to internal radius ratios. The experiments show necking on one side of the tubes at a stage somewhat beyond the maximum internal pressure. All tubes, except for one aluminum alloy tube, failed by shear fracture under decreasing pressure. The aluminum alloy tubes exhibited localized shear deformations in the neck region prior to fracture and also occasionally surface wave instabilities. The numerical investigation is based on an elastic-plastic material model for a solid that develops a vertex on the yield surface, using representations of the uniaxial stress-strain curves found experimentally. In contrast to the simplest flow theory of plasticity this material model predicts shear band instabilities at a realistic level of strain. A rather sharp vertex is used in the material model for the aluminum alloy, while a more blunt vertex is used to characterize copper. The theoretically predicted bifurcation into a necking mode, the cross-sectional shape of the neck, and finally the initiation and growth of shear bands from the highly strained internal surface in the neck region are in good agreement with the experimental observations.  相似文献   

6.
The bifurcation problem of a circular cylinder of elastic/plastic material under uniaxial tension is investigated, with particular reference to the usual engineering criterion that necking is initiated when the load on the specimen reaches a maximum. The material considered is compressible, with a smooth yield surface and associated flow rule. A lower bound analysis shows that for the particular constitutive equation chosen bifurcation cannot occur under a range of loading conditions while the stress is less than a certain value which is itself slightly less than the stress at the maximum load point. Diffuse axisymmetric necking modes under the commonly assumed loading conditions of prescribed axial components of velocity and shear-free traction-rates on the ends are, however, found to be initiated always after maximum load, the delay depending on the same factors shown for an incompressible material in reference [1]. The effect of the elastic compressibility assumption is to reduce the delay for a wide range of geometries, but to increase it for very slender specimens, as compared with the incompressible case. Surface modes are also found, but at stresses of an unrealistically high order of magnitude.  相似文献   

7.
We model a perivascular supported arterial tube as a uniform cylindrical membrane tube enclosed by a soft substrate, and derive the solution bifurcation criterion. We assume the surrounding soft substrate as an elastic foundation with distributed stiffness. We consider the tube to be a neo-Hookean material with isotropic and anisotropic (orthotropic) properties, and study solution bifurcation at a constant axial stretch. In the isotropic case, the surrounding soft substrate can substantially delay the onset of bifurcation through a subcritical jump in circular distension at bifurcation with increasing substrate stiffness. Introduction of anisotropy can significantly change the jump behavior from subcritical to supercritical.  相似文献   

8.
In this paper, we consider bifurcation from a circular cylindrical deformed configuration of a thick-walled circular cylindrical tube of incompressible isotropic elastic material subject to combined axial loading and external pressure. In particular, we examine both axisymmetric and asymmetric modes of bifurcation. The analysis is based on the three-dimensional incremental equilibrium equations, which are derived and then solved numerically for a specific material model using the Adams–Moulton method. We assess the effects of wall thickness and the ratio of length to (external) radius on the bifurcation behaviour.  相似文献   

9.
10.
Relatively thin-walled tubes bent into the plastic range buckle by axial wrinkling. The wrinkles initially grow stably but eventually localize and cause catastrophic failure in the form of sharp local kinking. The onset of axial wrinkling was previously established by bifurcation analyses that use instantaneous deformation theory moduli. The curvatures at bifurcation were predicted accurately, but the wrinkle wavelengths were consistently longer than measured values. The subject is revisited with the aim of resolving this discrepancy. A set of new bending experiments is conducted on aluminum alloy tubes. The results are shown to be in line with previous ones. However, the tubes used were found to exhibit plastic anisotropy, which was measured and characterized through Hill’s quadratic anisotropic yield function. The anisotropy was incorporated in the flow theory used for prebuckling and postbuckling calculations as well as in the deformation theory used for bifurcation checks. With the anisotropy accounted for, calculated tube responses are found to be in excellent agreement with the measured ones while the predicted bifurcation curvatures and wrinkle wavelengths fall in line with the measurements also. The postbuckling response is established using a finite element model of a tube assigned an initial axisymmetric imperfection with the calculated wavelength. The response develops a limit moment that is followed by a sharp kink that grows while the overall moment drops. The curvature at the limit moment agrees well with the experimental onset of failure. From parametric studies of the various instabilities it is concluded that, for optimum predictions, anisotropy must be incorporated in both bifurcation buckling as well as in postbuckling calculations.  相似文献   

11.
The finite element method is used to numerically simulate localized necking in AA6111-T4 under stretching. The measured EBSD data (grain orientations and their spatial distributions) are directly incorporated into the finite element model and the constitutive response at an integration point is described by the single crystal plasticity theory. We assume that localized necking is associated with surface instability, the onset of unstable growth in surface roughening. It is demonstrated that such a surface instability/necking is the natural outcome of the present approach, and the artificial initial imperfection necessitated by the macroscopic M–K approach [Marciniak and Kuczynski (1967). Int. J. Mech. Sci. 9, 609–620] is not relevant in the present analysis. The effects of spatial orientation distribution, material strain rate sensitivity, texture evolution, and initial surface topography on necking are discussed. It is found that localized necking depends strongly on both the initial texture and its spatial orientation distribution. It is also demonstrated that the initial surface topography has only a small influence on necking.  相似文献   

12.
We study possible steady states of an infinitely long tube made of a hyperelastic membrane and conveying either an inviscid, or a viscous fluid with power-law rheology. The tube model is geometrically and physically nonlinear; the fluid model is limited to smooth changes in the tube’s radius. For the inviscid case, we analyse the tube’s stretch and flow velocity range at which standing solitary waves of both the swelling and the necking type exist. For the viscous case, we first analyse the tube’s upstream and downstream limit states that are balanced by infinitely growing upstream (and decreasing downstream) fluid pressure and axial stress caused by fluid viscosity. Then we investigate conditions that can connect these limit states by a single solution. We show that such a solution exists only for sufficiently small flow speeds and that it has a form of a kink wave; solitary waves do not exist. For the case of a semi-infinite tube (infinite either upstream or downstream), there exist both kink and solitary wave solutions. For finite-length tubes, there exist solutions of any kind, i.e. in the form of pieces of kink waves, solitary waves, and periodic waves.  相似文献   

13.
This article discusses localized bifurcation modes corresponding to shear band formation and diffuse bifurcation modes corresponding to bulge formation for cylindrical soil specimen subjected to an axisymmetric load under undrained conditions. We employ the tangential-subloading surface model, which exhibits the characteristic regimes of the governing equations: elliptic, hyperbolic and parabolic. Also, conditions for shear band formation, shear band inclination, diffuse bulging formation, and the long and short wavelength limits of diffuse bulging modes are discussed in relation to material properties and their state of stress, i.e. the stress ratio and the normal-yield ratio. Tangential-plastic strain rate term is required for the analyses of shear band and diffuse bulging. The shear band and the diffuse bulging are generated in not only normal-yield but also subyield states and they are severely affected by the normal-yield ratio describing the degree of approach to the normal-yield state.  相似文献   

14.
When a hyperelastic membrane tube is inflatedby an internal pressure, a localized bulge will form when thepressure reaches a critical value. As inflation continues thebulge will grow until it reaches a maximum size after whichit will then propagate in both directions to form a hat-likeprofile. The stability of such bulging solutions has recentlybeen studied by neglecting the inertia of the inflating fluidand it was shown that such bulging solutions are unstableunder pressure control. In this paper we extend this recentstudy by assuming that the inflation is by an inviscid fluidwhose inertia we take into account in the stability analysis.This reflects more closely the situation of aneurysm forma-tion in human arteries which motivates the current series ofstudies. It is shown that fluid inertia would significantly re-duce the growth rate of the unstable mode and thus it has astrong stabilizing effect.  相似文献   

15.
The necking of spherical membranes subject to a prescribed increase in enclosed volume is investigated. Attention is restricted to axisymmetric deformations. The materials considered are incompressible, isotropic, time-independent and incrementally linear. A complete set of axisymmetric bifurcation modes is considered and a simple relation is found to govern the critical stress for bifurcation into a given mode. The limiting critical stress and the corresponding mode for short wavelengths are investigated and related to the results obtained from an independent local-necking analysis. Two perturbation methods are employed to study the growth of initial imperfections: one is valid for arbitrary modes, but restricted to small deviations from sphericity, and the other is valid only for the local-necking mode, but is not restricted to small deviations. The effect of path-dependent material behavior on the onset of local necking is explored. Path-dependent material behavior is found to encourage the preferential growth of short wavelength imperfections. Path-independent materials are shown to exhibit significant sensitivity to initial imperfections in the localized-necking mode, although this sensitivity is far less than for a path-dependent material. When account is taken of initial material-property inhomogeneities as well as initial thickness imperfections, it seems that no definite conclusion can be drawn concerning the appropriateness or inappropriateness of an explanation of the onset of localized necking based on a smooth yield-surface plasticity theory and assuming the presence of such initial inhomogeneities.  相似文献   

16.
The initiation and growth of necks in polymer tubes subjected to rapidly increasing internal pressure is analyzed numerically. Plane strain conditions are assumed to prevail in the axial direction. The polymer is characterized by a finite strain elastic–viscoplastic constitutive relation and the calculations are carried out using a dynamic finite element program. Numerical results for neck development are illustrated and discussed for tubes of various thicknesses. The sensitivity to the wave number of the thickness imperfections is studied with a focus on comparing a long wave length imperfection and a short wave length imperfection. After some thinning down at the necks, the mode of deformation switches to neck propagation along the circumference of the tube. A case is shown in which the necks have propagated along the entire tube wall, so that network locking in the polymer results in high stiffness against further expansion of the tube. The rate dependence of the necking behavior gives noticeable differences in neck development for slow loading versus fast loading.  相似文献   

17.
Neck retardation in stretching of ductile materials is promoted by strain hardening, strain-rate hardening and inertia. Retardation is usually beneficial because necking is often the precursor to ductile failure. The interaction of material behavior and inertia in necking retardation is complicated, in part, because necking is highly nonlinear but also because the mathematical character of the response changes in a fundamental way from rate-independent necking to rate-dependent necking, whether due to material constitutive behavior or to inertia. For rate-dependent behavior, neck development requires the introduction of an imperfection, and the rate of neck growth in the early stages is closely tied to the imperfection amplitude. When inertia is important, multiple necks form. In contrast, for rate-independent materials deformed quasi-statically, single necks are preferred and they can emerge in an imperfection-free specimen as a bifurcation at a critical strain. In this paper, the interaction of material properties and inertia in determining neck retardation is unraveled using a variety of analysis methods for thin sheets and plates undergoing plane strain extension. Dimensionless parameters are identified, as are the regimes in which they play an important role.  相似文献   

18.
Soft cylindrical gels can develop a long-wavelength peristaltic pattern driven by a competition between surface tension and bulk elastic energy. In contrast to the Rayleigh–Plateau instability for viscous fluids, the macroscopic shape in soft solids evolves toward a stable beading, which strongly differs from the buckling arising in compressed elastic cylinders.This work proposes a novel theoretical and numerical approach for studying the onset and the non-linear development of the elasto-capillary beading in soft cylinders, made of neo-Hookean hyperelastic material with capillary energy at the free surface, subjected to axial stretch. Both a theoretical study, deriving the linear and the weakly non-linear stability analyses for the problem, and numerical simulations, investigating the fully non-linear evolution of the beaded morphology, are performed. The theoretical results prove that an axial elongation can not only favour the onset of beading, but also determine the nature of the elastic bifurcation. The fully non-linear phase diagrams of the beading are also derived from finite element numerical simulations, showing two peculiar morphological transitions when varying either the axial stretch or the material properties of the gel. Since the bifurcation is found to be subcritical for very slender cylinders, an imperfection sensitivity analysis is finally performed. In this case, it is shown that a surface sinusoidal imperfection can resonate with the corresponding marginally stable solution, thus selecting the emerging beading wavelength.In conclusion, the results of this study provide novel guidelines for controlling the beaded morphology in different experimental conditions, with important applications in micro-fabrication techniques, such as electrospun fibres.  相似文献   

19.
The necking of an elastic-plastic circular plate under uniform radial tensile loading is investigated both within the framework of the three-dimensional theory and within the context of the plane-stress approximation. Attention is restricted to axisymmetric deformations of the plate. The material behavior is described by two different constitutive laws. One is a finite-strain version of the simplest flow-theory of plasticity and the other is a finite-strain generalization of the simplest deformationtheory, which is employed as a simple model of a solid with a vertex on its yield surface. For an initially uniform plate made of an incompressible material, bifurcation from the uniformly stretched state is studied analytically. The regimes of stress and moduli where the governing axisymmetric three-dimensional equations are elliptic, parabolic or hyperbolic are identified. The plane-stress local-necking mode emerges as the appropriate limiting mode from the bifurcation modes available in the elliptic regime. In the elliptic regime, the main qualitative features of the bifurcation behavior are revealed by the plane-stress analysis, although three-dimensional effects delay the onset of necking somewhat. For the deformation theory employed here, the first bifurcation modes are encountered in the parabolic regime if the hardening-rate is sufficiently high. These bifurcations are not revealed by a plane-stress analysis. For a plate with an initial inhomogeneity, the growth of an imperfection is studied by a perturbation method, by a plane-stress analysis of localized necking, and by numerical computations within the framework of the three-dimensional theory. When bifurcation of the corresponding perfect plate takes place in the elliptic regime, the finite element results show that the plane-stress analysis gives reasonably good agreement with the numerical results. When bifurcation of the corresponding perfect plate first occurs in the parabolic regime, then a bifurcation of the imperfect plate is encountered, that is, the finite element stiffness matrix ceases to be positive definite.  相似文献   

20.
In this study, Knudsen diffusion of low-pressure gases of infinite mean free path through various tubes is studied using the integral equation theory (IET), standard diffusion theory, and Monte Carlo (MC) simulations. We investigated the transmission probabilities (TPs) of linearly diverging?Cconverging, sinusoidally bulging, and periodic tubes as compared with TPs of conventional straight cylinders. An exact analytic solution for the TP through the straight cylindrical tube was developed using the standard diffusion theory with a linear concentration approximation. IET for the TPs through the diverging?Cconverging and bulging tubes were developed. MC simulation techniques were applied to calculate TPs through all the tube types azimuthal symmetry of which was held with tube radius changing only along the axial coordinate (z). The linearly diverging?Cconverging and sinusoidally bulging tubes provide noticeably higher TPs than those of the equivalent straight tubes. Periodic tubes show that if the tube length scaled by the equivalent diameter is of an order of or greater than the periodicity coefficient (equal to the number of peaks on the tube wall), then the TP of the periodic tube is larger than that of the equivalent straight tube.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号