首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A simple and sensitive method was developed for the simultaneous quantification of harpagoside and cinnamic acid in rat plasma using high-performance liquid chromatography system coupled to a negative ion electrospray mass spectrometric analysis. The plasma sample preparation was a simple deproteinization by the addition of two volumes of acetonitrile. The analytes were separated on an Intersil C8-3 column (2.1 mm i.d.x250 mm, 5 microm) with acetonitrile-5 mm ammonium formate aqueous solution (60:40, v/v) as mobile phase at a flow-rate of 0.2 mL/min. Detection was performed on a quadrupole mass spectrometer equipped with electrospray ionization (ESI) source operated under selected ion monitoring (SIM) mode. [M+HCOO]- at m/z 539 for harpagoside, [M-H]- at m/z 147 for cinnamic acid and [M-H]- at m/z 137 for salylic acid (internal standard) were selected as detecting ions, respectively. The method was validated over the concentration range 7-250 ng/mL for harpagoside and 5-500 ng/mL for cinnamic acid. The lower limits of quantitation for harpagoside and cinnamic acid were 7 and 5 ng/mL, respectively. The intra- and inter-day precisions (RSD%) were within 9.5% and the assay accuracies (RE%) ranged from -5.3 to 3.0% for both analytes. Their average recoveries were greater than 86%. Both analytes were proved to be stable during all sample storage, preparation and analysis procedures. The method was successfully applied to the pharmacokinetic study of harpagoside and cinnamic acid following oral administration of Radix Scrophulariae extract to rats.  相似文献   

2.
许海棠  黄丽涵  徐远金 《色谱》2008,26(5):599-602
建立了同时测定清热解毒口服液中的绿原酸、栀子苷、黄芩苷、连翘苷和靛玉红5种有效成分的高效液相色谱-电喷雾电离质谱(HPLC-ESI/MS)分析方法。采用Zorbax SB C18色谱柱,以含0.2%甲酸的0.4 mmol/L醋酸钠(A相)、乙腈(B相)为流动相进行梯度洗脱,在ESI正离子模式下,采用选择离子监测方法进行测定,用峰面积进行定量。结果表明,绿原酸、栀子苷、黄芩苷、连翘苷和靛玉红的线性范围分别为0.050~50 mg/L,0.020~20 mg/L,0.005~30 mg/L,0.010~15 mg/L和0.010~10 mg/L;检出限分别为0.010,0.005,0.001,0.002和0.003 mg/L。5种成分的加样回收率为97.0%~101.7%,相对标准偏差小于2.2%。该法快捷、准确、重复性好,可用于清热解毒口服液中的5种有效成分含量的同时测定。  相似文献   

3.
A reversed-phase high-performance liquid chromatographic (RP-HPLC) method was described for the determination of chlorogenic acid (CGA) in rat plasma using protocatechuic acid as internal standard (IS). CGA in plasma was extracted with acetonitrile, which also acted as deproteinization agent. Chromatographic separation was performed on a Kromasil C18 column with methanol-0.2 m acetic acid (pH 3.0, 25:75, v/v) as mobile phase at a flow-rate of 1.0 mL/min with an operating temperature of 30 degrees C and UV detection at 300 nm. The standard curve was found to be linear over the concentration ranges of 0.4-2.5 microg/mL and 2.5-40 microg/mL, and the limit of quantification (LOQ) was 0.4 microg/mL. The analytical precision and accuracy were validated by relative standard deviation (RSD) and relative error, which were in ranges 3.14-10.78% and -2.20-5.00%, respectively. The average recovery of CGA was 87.59%. The method was successfully applied to the pharmacokinetic study of CGA in Yin-Huang granules.  相似文献   

4.
Three phenylpropanoids (ferulic acid, chlorogenic acid, and caffeic acid) are simultaneously separated and determined within 13 min by a new capillary electrophoresis method using 15 mmol/L sodium borate (pH 8.71) as run buffer. The optimum conditions for the separation as well as the analytical characteristics, such as the calibration graph and limit of detection (LOD) for the determination of these three compounds, are studied. The linear range for the determination of ferulic, chlorogenic, and caffeic acid is 5.0 approximately 70.0, 8.0 approximately 112.0, and 9.0 approximately 64.0 microg/mL, with the LOD as 1.5, 2.25, and 6.0 microg/mL, respectively. The method, which is very simple, rapid, and of requisite sensitivity and reproduction, is satisfactorily used for the separation and determination not only of ferulic, chlorogenic, and caffeic acid in Cimicifuga foelida Li and its preparation (Yin-huang-han-pian), but also of ferulic acid and chlorogenic acid in Ligusticum chuanxiong hort. and Angelica sinensis (Oliv.) Diels.  相似文献   

5.
采用大体积样品堆积(LVSS)在线富集模式,建立了高效毛细管电泳(HPCE)测定蒲公英中阿魏酸、绿原酸和咖啡酸含量的方法。主要考察了在毛细管区带电泳(CZE)分离模式下,缓冲液的pH和浓度对分离效果的影响,以及在LVSS在线富集模式下,进样时间对富集效果的影响。在最优条件下阿魏酸、绿原酸和咖啡酸可在12 min内得到分离,3个成分在0.5~25.0μg/mL浓度范围内均有较好的线性关系(r2=0.999),平均加样回收率分别为104.9%,98.0%和100.1%,RSD(n=6)分别为3.6%,2.6%和1.0%。定量限(S/N=10)分别为0.10,0.10和0.03μg/mL,检出限(S/N=3)分别为0.03,0.03和0.01μg/mL。相对于常规CZE模式,本方法的富集效果倍数为17~19倍。建立的方法可用于蒲公英的日常检测与质量控制。  相似文献   

6.
A simple, sensitive and selective high‐performance liquid chromatography electrospray ionization tandem mass spectrometry (LC‐MS/MS) method was developed for simultaneous determination and pharmacokinetic study of caffeic acid (CA) and its active metabolites. The separation with isocratic elution used a mobile phase composed of methanol and water (containing 0.1% formic acid) at a flow rate of 0.2 mL/min. The detection of target compounds was done in selected reaction monitoring (SRM) mode. The SRM detection was operated in the negative electrospray ionization mode using the transitions m/z 179 ([M ? H]?) → 135 for CA, m/z 193 ([M ? H]?) → 134.8 for ferulic acid and isoferulic acid and m/z 153 ([M ? H]?) → 108 for protocatechuic acid. The method was linear for all analytes over the investigated range with all correlation coefficients 0.9931. The lower limits of quantification were 5.0 ng/mL for analytes. The intra‐ and inter‐day precisions (relative standard deviation) were <5.86 and <6.52%, and accuracy (relative error) was between ?5.95 and 0.35% (n = 6). The developed method was applied to study the pharmacokinetics of CA and its major active metabolites in rat plasma after oral and intravenous administration of CA. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
建立了液相色谱-串联质谱测定虾夷扇贝和长牡蛎中贝类毒素软骨藻酸残留的检测方法。样品经50%甲醇提取,LC-SAX柱净化,3mL0.1mol/L甲酸溶液洗脱,电喷雾离子源(ESI),在正离子、多反应监测方式(MRM)模式下进行定性与定量,定性离子对为m/z 311.98/265.91,m/z 311.98/247.9,m/z 311.98/192.91,以m/z 311.98/265.91为定量离子对,外标法定量。结果表明,方法的检测限为0.01μg/g,定量限为0.02μg/g。在0.02~10μg/mL范围内线性相关系数为0.9999。当添加软骨藻酸质量分数为20~1000 ng/g时,虾夷扇贝样品中软骨藻酸的平均回收率为81.3%~105.4%,RSD为3.9%~8.9%(n=6);长牡蛎样品中软骨藻酸的平均回收率为83.5%~106.6%,RSD为4.6%~6.4%(n=6)。方法满足对贝类产品中软骨藻酸残留的测定。  相似文献   

8.
This study aimed to develop a specific UHPLC‐ESI‐MS/MS method for simultaneous determination and pharmacokinetics of pinoresinol glucoside and chlorogenic acid in rat plasma after oral administration of Eucommia ulmoides . The chromatographic separation was achieved on a Hypersil GOLD column with gradient elution by using a mixture of 0.1% formic acid aqueous solution and acetonitrile as the mobile phase at a flow rate of 200 μL/min. A tandem mass spectrometric detection was conducted using multiple‐reaction monitoring via an electrospray ionization source in negative ionization mode. Samples were pre‐treated by a single‐step protein precipitation with acetonitrile, and bergenin was used as internal standard. After oral administration of 3 mL/kg E. ulmoides extract in rats, the maximum plasma concentrations of pinoresinol glucoside and chlorogenic acid were 57.44 and 61.04 ng/mL, respectively. The times to reach the maximum plasma concentration were 40.00 and 23.33 min for pinoresinol glucoside and chlorogenic acid, respectively. The intra‐ and inter‐day precision (RSD) values for the two analytes were <2.46 and 5.15%, respectively, and the accuracy (RE) values ranged from −12.76 to 0.00. This is the first study on pharmacokinetics of bioactive compounds in rat plasma after oral administration of E. ulmoides extract.  相似文献   

9.
A rapid and sensitive assay based on ultra‐high performance liquid chromatography with electrospray ionization tandem mass spectrometry was established and validated for the simultaneous determination of cichoric acid, chlorogenic acid, quinic acid, and caffeic acid in rat plasma after oral administration of Echinacea purpurea extract using butylparaben as the internal standard. Samples were pretreated by liquid–liquid extraction with ethyl acetate. The separations for analytes were performed on an ACQUITY UPLC HSS C18 column (1.8 μm 2.1 × 100 mm) using a gradient elution program with acetonitrile/10 mM ammonium acetate (pH 5.6) at a flow rate of 0.3 mL/min. The analytes were detected in multiple reaction monitoring mode with negative electrospray ionization. The lower limit of quantification of each analyte was not higher than 10.85 ng/mL. The relative standard deviation of the intraday and interday precisions was less than 14.69%. The relative errors of accuracies were in the range of –13.80 to 14.91%. The mean recoveries for extraction recovery and matrix effect were higher than 80.79 and 89.98%, respectively. The method validation results demonstrated that the proposed method was sensitive, specific, and reliable, which was successfully applied to the pharmacokinetic study of four components after oral administration of Echinacea purpurea extract.  相似文献   

10.
A simple, sensitive and rapid liquid chromatography/electrospray ionization mass spectrometry (LC/ESI-MS) method was developed and validated for the quantification of valproic acid, an antiepileptic drug, in human plasma using benzoic acid as internal standard (IS). Following solid-phase extraction, the analytes were separated using an isocratic mobile phase on a reversed-phase C18 column and analyzed by MS in the single ion monitoring mode using the respective [M-H]- ions, m/z 143 for valproic acid and m/z 121 for the IS. The assay exhibited a linear dynamic range of 0.5-60 microg/mL for valproic acid in human plasma. The lower limit of quantification was 500 ng/mL with a relative standard deviation of less than 10%. Acceptable precision and accuracy were obtained for concentrations over the standard curve range. The average absolute recoveries of valproic acid and the IS from spiked plasma samples were 96.1+/-4.2 and 95.6+/-2.7%, respectively. A run time of 4.5 min for each sample made it possible to analyze more than 250 human plasma samples per day. The validated method has been successfully used to analyze human plasma samples for application in pharmacokinetic, bioavailability and bioequivalence studies.  相似文献   

11.
A quantitative liquid chromatography/electrospray ionization tandem mass spectrometry (LC/ESI-MS/MS) method was developed for the analysis of the explosive, octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX). In negative ionization mode, HMX forms an acetate adduct ion [M + CH(3)COO](-), m/z 355, in the presence of a small amount of acetic acid in the mobile phase. The ESI collision-induced dissociation (CID) spectrum of m/z 355 was acquired and the transitions m/z 355 --> 147 and m/z 355 --> 174 were chosen for the determination of HMX in samples. Using this quantification technique, the method detection limit was 1.57 microg/L and good linearity was achieved in the range 5-500 microg/L. This method will help to unambiguously analyze environmentally relevant concentrations of HMX.  相似文献   

12.
A sensitive, rapid and specific method for the simultaneous quantification of oxysophocarpine (OSC) and its active metabolite sophocarpine (SC) in rat plasma was developed and validated, using a liquid-liquid extraction procedure followed by liquid chromatography/electrospray ionization mass spectrometric (LC/ESI-MS) analysis. The separation was performed on a Zorbax Extend-C(18) column (2.1 mm i.d. x 50 mm, 5 microm) with a C(18) guard column using methanol-water containing 5 mm ammonium acetate (15:85, v/v) as mobile phase. Analysis was performed in selected ion monitoring (SIM) mode with an electrospray ionization (ESI) interface. [M + H](+) at m/z 263 for OSC, [M + H](+) at m/z 247 for SC and [M + H](+) at m/z 249 for matrine (internal standard) were selected as detecting ions, respectively. The method was linear in the concentration ranges 10-1000 ng/mL for OSC and 5-500 ng/mL for SC. The intra- and inter-day precisions (coefficient of variation) were within 7% for both analytes. Their accuracy (relative error) ranged from -6.4 to 1.5%. The limits of detection for OSC and SC were 3 and 1.5 ng/mL, respectively. The limits of quantitation for OSC and SC were 10 and 5 ng/mL, respectively. Recoveries of both analytes were greater than 85% at the low, medium and high concentrations. Both analytes were stable during all sample storage, preparation and analytic procedures. The method was successfully applied to a pharmacokinetic study after an oral administration of OSC to rats with a dose of 15 mg/kg.  相似文献   

13.
A sensitive liquid chromatography/electrospray ionization tandem mass spectrometry (LC/ESI-MS/MS) method for the quantitative determination of ochratoxin A (OTA) in kidney samples was developed. Ochratoxin B (OTB) was used as internal standard. Extraction of homogenized kidney samples was done by adding a chloroform/phosphoric acid mixture. Due to restriction of the sample size, less chloroform could be used than in previously described methods. Two different columns for clean-up were compared: strong anion exchange (Bond Elut SAX) and Extrelut NT columns. The high-performance liquid chromatography (HPLC) was used with gradient elution consisting of variable mixtures of formic acid (0.3%) in acetonitrile and formic acid (0.3%) in water. The mass spectrometer was operated in the positive ESI mode using multiple reaction monitoring. For OTA the precursor ion was m/z 404 while the product ions were at m/z 239 and m/z 341. For OTB the precursor ion was m/z 370 while the product ions were at m/z 205 and at m/z 324. A calibration curve of fortified kidney samples was used to quantify OTA. Method validation was performed according to Commission Decision 2002/657/EC. Decision limit (CCalpha), detection capability (CCbeta), precision, bias, trueness, specificity and measurement uncertainty were determined. In general, the best results were obtained using SAX clean-up. CCalpha and CCbeta were 0.11 and 0.25 microg kg(-1), respectively. Within-laboratory reproducibility (% CV) was 9, 9, and 5% for OTA-fortified kidney samples of 0.5, 1, and 2.5 microg kg(-1), respectively. Trueness (%) was 75, 69, and 57% for OTA-fortified kidney samples at 0.25, 0.5, and 1 microg kg(-1), respectively. Measurement uncertainty and expanded uncertainty were 14.85 and 29.70%, respectively. All criteria as laid down in Commission Decision 2002/657/EC were fulfilled. Therefore, this LC/ESI-MS/MS method can be used to monitor kidneys for OTA in the framework of Council Directive No. 96/23/EC.  相似文献   

14.
A capillary zone electrophoresis/electrospray ionisation mass spectrometry (CZE/ESI-MS) method has been developed for the separation and detection of 5-aminolaevulinic acid (ALA) and porphobilinogen (PBG). Capillaries were 70 cm long with an inner diameter of 75 micrometer and outer diameter of 375 micrometer. The buffer used was aqueous ammonium acetate (50mM, pH 5.2) with a co-axial 'make-up' flow of methanol/aqueous 0.1% formic acid (1:1 v/v) at a flowrate of 6 microL/min. A voltage of 20 kV was used for CZE and an ESI voltage of 3.5 kV. Full scan data was acquired over the range m/z 100-500 in positive ion mode, from which selected ion electropherograms were extracted; at m/z 132 for the protonated molecular ion of ALA and m/z 210 for the methylenepyrrolenine fragment ion of PBG. The protonated molecular ion of PBG, m/z 227, was found to be too facile to monitor, easily losing ammonia in the electrospray source and better sensitivity was achieved by monitoring the resulting fragment ion. The detection limits were circa 100 attomoles of ALA and 10 attomoles of PBG at a signal-to-noise ratio (S/N) better than 10, providing sufficient sensitivity for clinical use and offering advantages over existing techniques.  相似文献   

15.
A liquid chromatography-electrospray ionization mass spectrometry (LC-ESI-MS) method was developed and validated for the assay of glucosamine sulfate in human plasma. Plasma proteins were precipitated by acetonitrile, followed by vortex mixing and centrifugation. The supernatant was transferred and derivatized with phenyl iso-thiocyanate in acetonitrile at 60 degrees C for 40 min. Chromatographic separation was performed on a C(18) column (Inertsil ODS-3 150 x 2.1 mm i.d., 5 microm, JP) with a mobile phase gradient consisting of 0.2% acetic acid (aqueous) and methanol at a flow-rate of 0.3 mL/min. MS detection using electrospray ionization (ESI) as an interface was used in single ion monitoring mode to determine positive ions at m/z 297. This method was shown to be selective and sensitive for glucosamine sulfate. The limit of detection was 35 ng/mL for glucosamine sulfate in plasma and the linear range was 0.1-20 microg/mL in plasma with a correlation coefficient (r) of 0.9991. The relative standard deviations (RSDs) of intra-day and inter-day assays were 8.7-11.4 and 9.8-12.6%, respectively. Extraction recoveries of glucosamine sulfate in plasma were greater than 73%. This method proved to be simple, reproducible and feasible for pharmacokinetic studies of glucosamine sulfate in healthy volunteers after a single oral administration (1500 mg). The pharmacokinetic parameters and relative bioavailabilities were investigated for both domestic glucosamine sulfate tablet and capsule preparations compared with an imported capsule product.  相似文献   

16.
Betulinic acid is under development as a therapeutic agent for the treatment of metastatic malignant melanoma. In support of pharmacokinetic and toxicological evaluations, a robust assay based on liquid chromatography/mass spectrometry (LC/MS) was developed for the quantitative analysis of betulinic acid. Sample preparation consisted of deproteinization of the plasma by the addition of three volumes of acetonitrile and one volume of methanol followed by centrifugation. Aliquots of the supernatant were analyzed using an isocratic reversed-phase high-performance liquid chromatography (HPLC) system coupled to a negative ion electrospray mass spectrometer. Deprotonated molecules of betulinic acid and the isomeric internal standard oleanolic acid were detected using selected ion monitoring at m/z 455. The limit of detection of betulinic acid was 0.5 pg (1.1 fM) injected on-column (50 pg/mL, 10 microL injection volume), and the limit of quantitation was 2 pg (4.4 fM, 200 pg/mL, 10 microL injection volume). Betulinic acid was stable in plasma samples at -20 degrees C for at least 3 weeks. The intra-day and inter-day coefficients of variation of the assay were < or =6.4 and < or =9.0%, respectively. The utility of the assay was demonstrated by analyzing betulinic acid spiked into mouse, rat and dog plasma, by determining the extent of binding of betulinic acid to plasma proteins, and by measuring betulinic acid in mouse and rat plasma following intraperitoneal or intravenous administration in vivo. At 15 and 25 microg/mL in mouse, rat or dog plasma, betulinic acid was 99.99% bound to serum proteins, and, at 5 microg/mL, betulinic acid was > or =99.97% bound.  相似文献   

17.
Phenolcarboxylic acid antioxidants do not act in vivo as radical-scavengers in isolation, but rather together with GSH (glutathione), a coantioxidant, they constitute an intricate antioxidant network. Caffeic acid, p-coumaric acid, ferulic acid and chlorogenic acid with or without 2-mercaptoethanol (ME), as a substitute for GSH, was investigated by the induction period (IP) method for polymerization of methyl methacrylate (MMA) initiated by thermal decomposition of 2,2'-azobisisobutyronitrile (AIBN, a source of alkyl radicals, R(.)) and benzoyl peroxide (BPO, a source of peroxy radicals, PhCOO(.)) using differential scanning calorimetry (DSC). Upon PhCOO(. )radical scavenging, the stoichiometric factors (n, number of free radical trapped by one mole of antioxidant) for caffeic acid, ferulic acid, p-coumaric acid and chlorogenic acid were 2.4, 1.8, 1.7 and 0.9, whereas upon R(.) radical scavenging, the corresponding values were 1.3, 1.2, 1.0 and 0.8, respectively. Antioxidants with n values close to 2 suggest the stepwise formation of semiquinone radicals and quinones. By contrast, those with n values close to 1 suggest the formation of dimers after single-electron oxidation, possibly due to recombination of corresponding aryloxy radicals. The ratio of the rate constant of inhibition to that of propagation (k(inh)/k(p)) declined in the order chlorogenic acid > p-coumaric acid > ferulic acid > caffeic acid. The ratio of the observed IP for the phenolcarboxylic acid/2-mercapto-ethanol (ME) mixture (1:1 molar ratio) (A) to the calculated IP (the simple sum of phenol acid antioxidant and ME) (B) was investigated. Upon R(.) scavenging, the caffeic acid or p-coumaric acid/ME mixture was A/B > 1, particularly the former was 1.2, suggesting a synergic effect. By contrast, upon PhCOO(.) scavenging, the corresponding mixture was A/B < 1, particularly the latter was 0.7, suggesting an antagonistic effect. Upon both radicals scavenging, the A/B for the ferulic acid or chlorogenic acid/ME mixture was approximately 1. The reported beneficial antioxidant, anti-inflammatory and anticancer effects of caffeic acid and p-coumaric acid may be related to their prooxidant-antioxidant balance in the presence of GSH.  相似文献   

18.
采用在线扫集-胶束毛细管电动色谱法(sweeping-MEKC)分离测定扛板归中的阿魏酸、咖啡酸和原儿茶酸。采用未涂层熔融石英毛细管(50 cm×50μm,有效柱长36 cm);环境温度25℃;缓冲体系为20 mmol/L NaH2PO4-80mmol/L十二烷基磺酸钠(SDS)-12.5%乙腈(V/V)(pH 2.20),紫外检测波长为216 nm,运行分离电压-20 kV,进样时间100 s。在优化条件下,3种有机酸均在20 min内出峰,峰面积RSD均小于5%。检出限分别达到98.52,118.73和27.27μg/L。  相似文献   

19.
建立液相色谱-串联质谱(LC-MS/MS)检测生物合成咖啡酸苯乙酯体系中咖啡酸(Caffeic acid,CA)和咖啡酸苯乙酯(Caffeic acid phenethylester,CAPE)的方法。采用LC-MS/MS电喷雾电离(ESI),负离子选择反应监测(SRM)模式检测。以V(乙腈)∶V(水)∶V(冰醋酸)=55∶45∶0.5为流动相,流速1.0mL/min,Hypersil C18色谱柱分离并检测生物合成咖啡酸苯乙酯体系中的咖啡酸以及咖啡酸苯乙酯的含量,并对生物合成咖啡酸苯乙酯的收率进行了动力学分析。本方法在进样量为0.2~20μg时具有良好的线性关系,咖啡酸和咖啡酸苯乙酯样品的加标回收率分别为93.4%~98.2%和90.3%~97.8%,相对标准偏差分别为1.79%~2.56%和1.82%~3.67%,咖啡酸苯乙酯收率在3d内可以达到15.54%,表明本方法简便、快速、可靠。  相似文献   

20.
A rapid and sensitive liquid chromatography hyphenated with electrospray ionization tandem mass spectrometric method (LC–ESI–MS/MS) was developed and validated for simultaneous determination of evobrutinib and evobrutinib‐diol in dog plasma. The plasma sample was processed using acetonitrile and chromatographic separation was carried out on a Waters Acquity BEH C18 column (50 × 2.1 mm, 1.7 μm). The mobile phase was composed of 0.1% formic acid and acetonitrile, with an optimized gradient elution at a flow rate of 0.4 mL/min. Detection was accomplished in selective reaction monitoring mode via electrospray ionization interface operated in positive ion mode. The precursor‐to‐product transitions for quantification were m/z 430.2 → 98.1 for evobrutinib, m/z 464.2 → 98.1 for evobrutinib‐diol and m/z 441.2 → 138.1 for ibrutinib (internal standard). The developed assay was linear over the tested concentration ranges with correlation coefficient >0.995. The LLOQ was 0.1 ng/mL for both analytes. The inter‐ and intra‐day precisions were <9.65% and the accuracy ranged from ?3.94 to 6.37%. The extraction recovery was >85.41% and no significant matrix effect was observed. The developed assay was successfully applied to the pharmacokinetic study of evobrutinib and evobrutinib‐diol in dogs after oral administration of evobrutinib at a single dose of 5 mg/kg.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号