共查询到19条相似文献,搜索用时 78 毫秒
1.
设计了一种新颖的基于差分进化算法和NSGA-Ⅱ的混合进化算法用来解决多目标优化问题。在此算法中,根据算法的搜索情况设计相应的自适应变异算子,以便在突变操作中找到Pareto解。同时,选择操作将基于NSGA-Ⅱ快速非优超排序和拥挤机制将父代与子代的双种群进行截短,确保最优解不会丢失并保证解的多样性。三个经典测试函数的仿真结果表明,文中算法在实现多目标优化问题的两个目标(获得收敛于真实Pareto前沿的解和解沿着前沿均匀扩展)方面表现出良好的综合性能。 相似文献
2.
本文就几类困难的网络路径问题及其多目标扩展形式给出相应的混合型进化算法,并在微机上予以实现,为复杂的组合优化问题提供了新的求解手段. 相似文献
3.
4.
模糊最短路的一种算法 总被引:1,自引:0,他引:1
模糊最短路问题在许多领域有着广泛的应用,研究这一问题具有重要意义。根据多准则决策理论求非被支配路径集合,求最大效用模糊最短路以及利用模糊数排序方法求模糊最短路是常用的三种研究方法,本文利用OERI排序原理,使网络模糊边长具有线性可加性,对具有三角模糊数边权的网络给出了一种标号算法,该算法简单高效,且易于在计算机上实现,算法的时间复杂度为O(n^2)。 相似文献
5.
为了改善公交服务质量,公交运营者试图调整现有时刻表的发车时间,使不同线路的车次协同到达换乘站点以方便乘客换乘。针对此场景,研究了公交时刻表重新协同设计问题,提出了求解该问题的多目标模型。模型考虑了对发车间隔灵敏的乘客需求、灵活的车次协同到站方式和发车时间的规则性,分析了该多目标模型的特征和计算复杂性,表明本文研究的问题是NP-hard问题,且它的帕累托最优前沿是非凸的,设计了基于非支配排序的遗传算法求解模型。算例表明,与枚举算法相比,提出的求解算法在较短的时间内可获得高质量的帕累托解。 相似文献
6.
针对由多个工厂组成的分布式系统,考虑不同工厂的个体利益诉求,构建了多目标协同生产计划模型。在该模型中,以最大化整体收益作为第一个优化目标;同时,基于亚当斯的公平理论,利用偏离系数法,以最小化个体收益平衡偏差作为第二个优化目标。结合模型结构特点,基于快速非支配排序遗传算法,设计了相应的求解过程。最后,通过一个算例验证表明,本文设计的计划模型和求解方法,不仅可以从网络集成角度协调各个工厂的生产、库存和运输活动,而且能够实现整体利益和个体利益非一致性的最小化。 相似文献
7.
一个具有两类工件的多目标排序的多项式时间算法 总被引:3,自引:0,他引:3
本文考虑具有两个工件集的单机排序问题.第一个工件集J1以完工时间和为目标函数,第二个工件集J2以最大加权完工时间为目标函数.问题的目标是寻找一种排序,使得两个目标函数的加权和达到最小.本文证明该问题可在O(n1n2(n1 n2))时间内求解. 相似文献
8.
9.
10.
多目标规划的一种混合遗传算法 总被引:3,自引:0,他引:3
本文利用遗传算法的全局搜索内能力及直接搜索算法的局部优化能力,提出了一种用于多目标规划的混合遗传算法.与Pareto遗传算法相比.本文提出的算法能提高多目标遗传算法优化搜索效率,并保证了能得到适舍决策者要求的Pareto最优解.最后,理论与实践证明其有有效性. 相似文献
11.
随机混流U型拆卸线平衡排序问题多目标进化算法优化 总被引:1,自引:0,他引:1
针对混流U型拆卸线平衡排序问题,考虑拆卸时间不确定,建立了该问题最小拆卸线平均闲置率、尽早拆卸危害和高需求零部件、最小化平均方向改变次数的多目标优化模型,并提出一种基于分解和动态邻域搜索的混合多目标进化算法(Hybrid Multi-objective Evolutionary Algorithm Based on Decomposition, HMOEA/D)。该算法通过采用弹性任务分配策略、动态邻域结构和动态调整权重以保证解的可行性并搜索得到分布较好的非劣解集。最后,仿真求解实验设计技术(DOE)生成的测试算例,结果表明HMOEA/D较其它算法能得到更接近Pareto最优、分布更好的近似解集。 相似文献
12.
《数学的实践与认识》2019,(19)
为了解决仅含预算约束的投资组合优化模型,提出一种基于种群密度的多目标协同进化算法.算法采用种群竞争的策略自适应的产生不定规模的种群,避免了固定种群规模的缺点.在进化过程中每个种群都会参考自身的最优个体以及竞争种群对自身的影响,超级个体集合存储进化过程中产生的最优解,通过最优个体的引导使算法快速收敛至Pareto前沿.实验结果表明,与NSGA-2算法相比,提出的算法在稳定性和收敛性都有很好的表现,是一种有效的多目标进化算法. 相似文献
13.
多目标线性规划的一种交互式单纯形算法 总被引:1,自引:0,他引:1
本文基于分析有效极点解的有效变量的特点以及在有效点处各个目标函数的数值来得到改进的搜索方向的研究思想,提出了求解目标函数和约束均为线性的多目标线性规划问题的一种交互式算法。该方法可以保证每一步得到的解均为有效极点解,且根据决策者的偏好不断得到改进,直至最终得到满意的最终解。 相似文献
14.
A Hybrid Multiobjective Evolutionary Algorithm for Solving Vehicle Routing Problem with Time Windows 总被引:2,自引:0,他引:2
Vehicle routing problem with time windows (VRPTW) involves the routing of a set of vehicles with limited capacity from a central
depot to a set of geographically dispersed customers with known demands and predefined time windows. The problem is solved
by optimizing routes for the vehicles so as to meet all given constraints as well as to minimize the objectives of traveling
distance and number of vehicles. This paper proposes a hybrid multiobjective evolutionary algorithm (HMOEA) that incorporates
various heuristics for local exploitation in the evolutionary search and the concept of Pareto's optimality for solving multiobjective
optimization in VRPTW. The proposed HMOEA is featured with specialized genetic operators and variable-length chromosome representation
to accommodate the sequence-oriented optimization in VRPTW. Unlike existing VRPTW approaches that often aggregate multiple
criteria and constraints into a compromise function, the proposed HMOEA optimizes all routing constraints and objectives simultaneously,
which improves the routing solutions in many aspects, such as lower routing cost, wider scattering area and better convergence
trace. The HMOEA is applied to solve the benchmark Solomon's 56 VRPTW 100-customer instances, which yields 20 routing solutions
better than or competitive as compared to the best solutions published in literature. 相似文献
15.
Noura Beji Bassem Jarboui Mansour Eddaly Habib Chabchoub 《Journal of computational science》2010,1(3):159-167
The Redundancy Allocation Problem generally involves the selection of components with multiple choices and redundancy levels that produce maximum system reliability given various system level constraints as cost and weight. In this paper we investigate the series–parallel redundant reliability problems, when a mixing of components was considered. In this type of problem both the number of redundancy components and the corresponding component reliability in each subsystem are to be decided simultaneously so as to maximise the reliability of system. A hybrid algorithm is based on particle swarm optimization and local search algorithm. In addition, we propose an adaptive penalty function which encourages our algorithm to explore within the feasible region and near feasible region, and discourage search beyond that threshold. The effectiveness of our proposed hybrid PSO algorithm is proved on numerous variations of three different problems and compared to Tabu Search and Multiple Weighted Objectives solutions. 相似文献
16.
Most of the well known methods for solving multi-objective combinatorial optimization problems deal with only two objectives.
In this paper, we develop a metaheuristic method for solving multi-objective assignment problems with three or more objectives.
This method is based on the dominance cost variant of the multi-objective simulated annealing (DCMOSA) and hybridizes neighborhood
search techniques which consist of either a local search or a multi-objective branch and bound search (here the multi-objective
branch and bound search is used as a local move to a fragment of a solution). 相似文献
17.
18.
The purpose of this paper is to develop a hybrid and practical man-machine interactive approach to solving linear programmes involving more than one objective function. The approach incorporates all the strengths and avoids the weaknesses of some existing methods. It uses the solution of a two-person zero-sum game with mixed strategies to generate efficient solutions, and then proceeds to modify the feasible region using responses from the decision-maker. The cycle is repeated until a satisfactory solution is found. An example from the literature is solved using the proposed method in order to demonstrate its applicability. A microcomputer implementation of the method is described, with illustrations from actual screen displays. A comparison of the proposed method with 14 other existing methods is also presented. 相似文献
19.
本文针对求解旅行商问题的标准粒子群算法所存在的早熟和低效的问题,提出一种基于Greedy Heuristic的初始解与粒子群相结合的混合粒子群算法(SKHPSO)。该算法通过本文给出的类Kruskal算法作为Greedy Heuristic的具体实现手段,产生一个较优的初始可行解,作为粒子群中的一员,然后再用改进的混合粒子群算法进行启发式搜索。SKHPSO的局部搜索借鉴了Lin-Kernighan邻域搜索,而全局搜索结合了遗传算法中的交叉及置换操作。应用该算法对TSPLIB中的典型算例进行了算法测试分析,结果表明:SKHPSO可明显提高求解的质量和效率。 相似文献