首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The cutting of a microstructured polymer optical fibre to form an optical end-face is studied. The effect of the temperature and speed of the cutting blade on the end-face is qualitatively assessed and it is found that for fibres at temperatures in the range 70-90 °C, a blade at a similar temperature moving at a speed of less than 0.5 mm/s produces a good quality end-face. The nature of the damage caused by the cutting process was examined and found to vary with fibre temperature, blade quality and cut depth. Thermo-mechanical analysis showed that the drawn material was significantly more visco-elastic than the annealed raw material in the 70-90 °C temperature range. The behaviour of the surface damage with cut depth was found to be consistent with the behaviour of a visco-elastic material.  相似文献   

2.
针对采用单点金刚石超精加工的KDP晶体光学表面,研究了切削参数对微观形貌频率特征的影响。通过功率谱密度获得表面轮廓频率分布,并用连续小波重构加工过程中随切削用量变化的微观轮廓频率特征。结果表明:切削参数对微观形貌的影响具体表现在实际频率特征上,中频特征波长及幅值反映了切深及转速变化,随切深及转速增加,幅值变大;低频特征反映了进给量变化,随着进给量变小,频率及幅值变小;高频特征是加工过程中振动及材料各向异性的具体表现。  相似文献   

3.
研究降维、去冗后光谱数据色彩显示问题。传统的光谱数据色彩显示时,常采用截取或压缩至0~1范围进行映射,容易丢失图像细节,提出一种基于多区间平移映射评价优选方法的光谱数据色彩融合显示算法。首先对光谱数据立方体进行主成份变换,将前三成分分别赋值给对色空间的黑白通道、红绿通道和黄蓝通道,然后经过空间变换到sRGB空间,将数据分段平移到0~1范围,映射至8位RGB空间,并对每次平移映射图像进行标准差、熵、平均梯度的单项评价,全部平移结束后,对所有的评价值进行综合评价,选取综合评价值最高的区间输出映射。实验结果表明,融合图像能最大限度地保证图像的能量、信息和清晰度,有利于人眼的快速识别判断。  相似文献   

4.
We present the time-resolved spectral analysis of the settling process in a pulsed external-cavity quantum-cascade laser (EC-QC laser) emitting in the wavelength range around 7.4 μm. Due to mode competition between the two cavities formed by the laser-chip on one hand and the external-cavity on the other hand, a time-dependent spectral emission on a ns time-scale can be observed. Depending on the spectral characteristic of the external cavity with respect to the chip gain curve time-delays of the external cavity emission of 15–35 ns within the 100 ns drive pulse can be observed.  相似文献   

5.
基于目标发射光谱分析法的原理,通过分析小尺寸实验平台上测得的体积分数10%的甲烷爆炸火焰光谱数据,提出甲烷爆炸火焰光谱特征分析方法,包括频域特征参数光谱密度、波段辐射光强度、波段平均及偏差,时域特征参数波段辐射能量、时间段平均及偏差和特性参数偏度、峰度、半宽的计算方法;分析得出当甲烷爆炸火焰光谱波长值为某些定值时,光谱密度在1 nm范围内在正向与负向之间转换,表明光强密集程度变化剧烈;甲烷爆炸火焰光谱波段定积分在550~900 nm波段最强;甲烷爆炸火焰光谱信号随着波长的增大可测时间增长,信号强度在达到峰值后整体呈衰减趋势,在衰减过程中间隔出现依次减弱的强度增强;研究结果表明目标发射光谱分析法可应用于甲烷爆炸感应期内火焰光谱的动态半定量分析,分析得出的光谱特征可作为检测甲烷爆炸火焰的判据。  相似文献   

6.
Modern drug laws require that a seized sample be characterized for both the illegal substances present and the quantity of each of those substances. The goal of this work was to develop a common approach to model development based on Raman spectroscopic analysis followed by partial least squares (PLS) regression that would allow us to obtain quantitative information from simulated street-drug samples. Each drug sample contained one drug surrogate—either isoxsuprine, norephedrine, benzocaine, or lidocaine—and up to 3 different cutting agents. All spectra were acquired on a homebuilt Raman instrument equipped with a rotating sample holder. The same steps were employed for developing separate models for each drug surrogate, including spectral preprocessing by Savitsky-Golay smoothing, differentiation, mean-centering, and autoscaling. PLS models were developed using 2 latent variables that yielded root mean square errors of calibration (RMSEC) values in the 3% range and root mean square error of prediction (RMSEP) values in the 4% range.  相似文献   

7.
考虑水分光谱吸收特征的水稻叶片SPAD预测模型   总被引:1,自引:0,他引:1  
叶绿素是植被光合作用的重要色素,传统实验室方法测定叶绿素含量需破坏性取样且操作复杂。通过构建高精度SPAD光谱估算模型,可以实现对水稻叶片叶绿素含量的实时无损监测。以黑龙江省不同施氮水平下水稻为研究对象,采用SVC HR768i型光谱辐射仪共获取移栽后、分蘖期、拔节期、孕穗期、抽穗期共五个关键时期水稻叶片反射光谱数据。光谱探测范围350~2 500 nm。利用自带光源型手持叶片光谱探测器直接测定叶片光谱,光源为内置卤素灯。采用SPAD-502型手持式叶绿素仪同步测定水稻叶片的SPAD值。叶片水分是植物光合作用的基本原料,也间接影响着叶绿素含量。叶片含水量降低则会影响植物正常的光合作用,导致其叶绿素含量随之降低。因此将叶绿素敏感波段与水分吸收范围结合作为SPAD估算的输入量。随机森林模型是一个基于多个分类树的算法。算法在采样的过程中包括两个完全随机的过程,一是有放回抽样,可能会得到重复的样本,二是选取自变量是随机的。因此本文对叶片光谱反射率进行去包络线(CR)处理,综合考虑可见光近红外波段提取水稻叶片反射光谱特征参数和植被指数,综合分析光谱指标与SPAD相关关系,采用随机森林算法构建不同输入量的SPAD高光谱估算模型。结果表明: (1)水稻叶片SPAD与光谱反射率的相关系数在叶绿素敏感波段红波段范围(600~690 nm)、红边范围(720~760 nm)、水分吸收波段范围(1 400~1 490和1 900~1 980 nm)均为0.75以上;(2)在光谱参数与SPAD 的相关分析中,NDVI,DP2与水稻叶片SPAD值相关性最好,相关系数为0.811和0.808;(3)以结合水分光谱信息后的CR(V1, V2, V3, V4)为自变量所建立的随机森林模型精度最高,R2为0.715,RMSE为2.646,可作为水稻叶片叶绿素预测模型。研究结果揭示了不同品种水稻的光谱响应机制,提供了水稻叶片SPAD值高精度反演的技术方法,为监测与调控东北地区水稻正常生育进程提供技术支持。  相似文献   

8.
In this work various problems concerning cutting copper sheets using CO2 laser are reported. First, all copper thermophysical properties, that regulate the process dynamics, and then the weight of each parameter has been evaluated numerically, even though only approximately. The surface absorption value of copper at room temperature and near the melting point and the order of laser power that is necessary to cause a gradual raise of the workpiece temperature from room to melting have been estimated. Then, the order of the cutting speed at which a sheet of a known thickness can be cut has been calculated. The analysis of all these problems, and the process dynamics and state of the art seem to confirm the validity of the current thesis on the impossibility of cutting copper by CO2 laser. In the second part of the work the experimental data relating to the first ever tests on 0.2–4.0 mm thick copper sheet cutting by 2 kW CO2 laser are reported. These first interesting results have been obtained thanks to the possibility of making overlapped layers of cupric oxide CuO, mixed with a small quantity of cuprous oxide Cu2O grown under laser beam irradiation (CuO and Cu2O, together, allow the laser cutting to be carried out). This has been confirmed by the analyses of the cutting edges with a computerized X-ray diffractometer. We have also seen that the per cent absorption of laser radiation at 10.6 micron does not increase in the presence of just cuprous oxide while, when the experimental conditions allow it, the growth of cupric oxide increases the absorption value to around 52–58 per cent, giving rise to the loop process with three variable quantities (temperature-oxide-absorption) that has been the winning clue of cutting process. The behaviour of the critical cutting speedV, the cutting widthsb and the productV·b versus the thickness for 2 kW CO2 laser using a 4″ ZnSe and 3.5″ KCl focusing lens have been tested. Moreover, the influence of different gases and flows on the cutting process have been experimented. The work-speed turned out to be significant and various micrographic sections, performed on the workpieces have shown that the laser cutting quality is quite good. A first analysis of the results has shown that laser cutting is not comparable to the one of steel, so much so that the mathematical formalism developed for steels has proved to be unsuitable for copper. This paper was done under research contract with Italian Governmental Agency ISMEZR-INTERVENTO STRAORDINARIO NEL MEZZOGIORNO, which is supporter and financing organization within the project P.S. 35-105 IND. The first, the second and the third paper on this topic has been published on:-Review LA MECCANICA ITALIANA, n. 190, 1985, 45–47, ITALY (all rights reserved)-Review LASERS & APPLICATIONS, n. 3, Vol. 5, 1986, 59–64, High Tech. Publications Inc., Torrance, CA-USA (all rights reserved)-Proceedings of ECOOSA'86-European Conference on Optics, Optical Systems and Applications, Sept. 30–Oct. 3, 1986, Florence, ITALY (all rights reserved)  相似文献   

9.
为探讨快速、实时藻类检测方法,实验通过荧光光谱成像技术结合模式识别方法对不同藻类进行鉴别研究。发现藻类样本存在着显著的荧光特性,通过采集40个藻类样品的荧光光谱图像,对图像进行去噪、二值化处理,确定有效像素后,根据光谱立方体绘制每个样本的光谱曲线,将所得400~720 nm区段范围内的光谱数据作鉴别分析,再利用系统聚类分析及主成分分析两种不同的模式识别法对光谱数据进行处理。系统聚类分析结果表明: 采用欧氏距离法及平均加权法计算样本间的聚类距离,在距离L=2.452以上水平处可将样本正确分类,准确率为100%;主成分分析结果表明: 通过对原始光谱数据进行一阶微分、二阶微分、多元散射校正、变量标准化等预处理后,再对数据进行主成分分析,其中二阶微分预处理后鉴别效果最佳,八种藻类样品在主成分特征空间中独立分布。因此,利用荧光光谱成像技术结合聚类分析法及主成分分析法对藻类进行鉴别是可行的,操作简便、快速、无损。  相似文献   

10.
应用电可控液晶光谱成像装置,测定不同市售来源的西洋参饮片,以期为其质量控制提供新的方法。系统光谱分辨率5nm,光谱覆盖范围为405~680nm,空间分辨率50lp·mm-1。从成像光谱立方体中提取特征光谱曲线,构建饮片指纹图谱;采用主成分等聚类分析方法解析其指纹图谱,用于饮片真伪鉴别与质量判定。结果与性状,显微及理化鉴定结果相吻合。表明光谱成像分析技术可用于中药指纹图谱的构建和质量评价,操作方法简便、快速、无损。  相似文献   

11.
This paper reports a statistical analysis of the multiple-pass laser cutting of wet and dry pine wood with a Ytterbium fibre laser. As multiple factors affect the laser wood cutting process, finding the optimal combination of process parameters is necessary to achieve good quality and high process efficiency. Design of experiments (DOE) and statistical modelling were used in this study to investigate the significant process parameters and their interactions. A high brightness, 1 kW IPG single mode, continuous wave Ytterbium doped fibre laser was employed to cut wet and dry pine wood samples. The parameters investigated are laser power, traverse speed, focal plane position (f.p.p.), gas pressure, number of passes, direction of cut (normal or parallel to wood's tracheids) and the moisture content. The experimental results were compared against process responses defining the efficiency (i.e. kerf depth and energy consumption) and quality of the cut section (i.e. kerf width, heat affected zone—HAZ, edge surface roughness and perpendicularity). It has been found that the laser cutting process was mainly affected by the moisture content and the cut direction with respect to the wood's tracheids, followed by traverse speed, laser power and the number of passes. The effect of moisture content on energy consumption in the laser cutting process of both wet and dry wood is analysed. The wood cutting results with fibre laser are compared with those from a CO2 laser.  相似文献   

12.
It has been nearly 33 years since the first laser cut was produced at The Welding Institute, Cambridge, UK. It is quite remarkable that laser cutting as we know it today has changed very little since these first trials. The developments that have taken place relate to greater process understanding, improved laser sources, enhanced beam-handling systems and process refinements. Much effort has been placed in improving the efficiency of the process such that thicker sections can be cut with moderate laser powers. Yet, for all of these developments laser cutting has seen little movement in maximum section limits that can be cut. Commercial process providers routinely cut to maximum depths of around 12–15 mm in mild steel with 2 kW lasers. While it is true that the market is small for steel sections above 15 mm it is apparent that some industries such as offshore, marine, construction and heavy engineering would benefit greatly from a laser process capable of cutting sections much greater than 15 mm. This paper presents results obtained from a study of a new thick section laser-cutting process capable of cutting sections up to 50 mm thick in the first instance, with power levels less than 2 kW whilst maintaining excellent cut quality. The work presents initial results of cutting steel up to 50 mm thick and examines the process using theoretical and experimental analysis.  相似文献   

13.
Laser cutting of medium density fibreboard (MDF) is a complicated process and the selection of the process parameters combinations is essential to get the highest quality cut section. This paper presents a means for selecting the process parameters for laser cutting of MDF based on the design of experiments (DOE) approach. A CO2 laser was used to cut three thicknesses, 4, 6 and 9 mm, of MDF panels. The process factors investigated are: laser power, cutting speed, air pressure and focal point position. In this work, cutting quality was evaluated by measuring the upper kerf width, the lower kerf width, the ratio between the upper kerf width to the lower kerf width, the cut section roughness and the operating cost. The effect of each factor on the quality measures was determined. The optimal cutting combinations were presented in favours of high quality process output and in favours of low cutting cost.  相似文献   

14.
通过焊接和"整体环形锻造+线切割"两种制造方案对ITER磁体支撑U型支撑夹(PFCS2 U)的制造进行了研究.在采用TIG焊接方案时,通过对组件进行双面和单面焊接,结合多种辅助工装和热处理,最终可将尺寸控制在要求范围内,77K时焊缝的夏比冲击性能低于100J;在采用"整体环形锻造+狭缝线切割"的制造方案时,U型支撑夹的...  相似文献   

15.
Laser cutting is a popular manufacturing process utilized to cut various types of materials economically. The width of laser cut or kerf, quality of the cut edges and the operating cost are affected by laser power, cutting speed, assist gas pressure, nozzle diameter and focus point position as well as the work-piece material. In this paper CO2 laser cutting of stainless steel of medical grade AISI316L has been investigated. Design of experiment (DOE) was implemented by applying Box–Behnken design to develop the experiment lay-out. The aim of this work is to relate the cutting edge quality parameters namely: upper kerf, lower kerf, the ratio between them, cut section roughness and operating cost to the process parameters mentioned above. Then, an overall optimization routine was applied to find out the optimal cutting setting that would enhance the quality or minimize the operating cost. Mathematical models were developed to determine the relationship between the process parameters and the edge quality features. Also, process parameters effects on the quality features have been defined. Finally, the optimal laser cutting conditions have been found at which the highest quality or minimum cost can be achieved.  相似文献   

16.
NaYF_4微晶中Tm~(3+)-Er~(3+)耦合对间的能量传递   总被引:4,自引:3,他引:1       下载免费PDF全文
在NaYF4微晶中借助于Tm3+-Er3+耦合对间能量传递过程,能够将一个高能291 nm紫外光光子剪裁成近红外796 nm和蓝色476 nm两个光子。在291 nm(34 364 cm-1)紫外光激发下,Tm3+的1I6能级首先被布居,再经过一个交叉弛豫过程使得Er3+的4I9/2和Tm3+的1G4能级同时被布居,从而实现了Tm3+的1G4→3H6[476 nm(21 008 cm-1)]和Er3+的4I9/2→4I15/2[796 nm(12 563 cm-1)]辐射跃迁。估算了这种下转换过程的能量传递效率ηET和量子效率ηQE。通过这种量子剪裁可以解决光谱失配问题,提高GaAs太阳能电池中的转换效率。  相似文献   

17.
基于近红外光谱(NIRS)技术和遗传算法-反向传播(GA-BP)神经网络建立模型,分析茶叶掺蔗糖样品的1~2.5 μm原始光谱数据的有效性及冗余度。固定样本数据,对模型的参数优化选择后建立茶叶蔗糖含量定量检测模型。将1~2.5 μm原始数据分1~1.7,1~1.3,1.3~1.7,1.7~2.5和2~2.2 μm。利用建立的模型对同一分辨率下的不同波段进行模型训练。预测结果表明,1~1.7和1~2.5 μm波段存在数据冗余。仅使用1.3~1.7或1.7~2.5 μm波段即可有效建立模型。预测模型对同一波段下的不同分辨率进行研究,从2 nm到20 nm改变分辨率,当波段范围为1~2.5 μm时,模型的R均介于0.9和0.95之间,且RMSEP也在1.7和2.1之间。当波段范围为1~1.7 μm时,模型的R均在0.9和0.93之间,且RMSEP也在1.95和2.25之间。结果表明,1~2.5 μm原始数据中确实存在波长范围和光谱分辨率的冗余。通过光谱特征分析和算法建模,可以显著提高光谱数据获取的有效性;对于茶叶中蔗糖含量的检测,可以采用更窄的波长范围和更低的光谱分辨率。  相似文献   

18.
傅里叶红外光谱(FTIR)是材料表征的一种重要手段,然而受限于光的衍射极限,传统傅里叶红外光谱仪的极限空间分辨率在微米量级,无法应用于纳米材料的表征。纳米傅里叶红外光谱(Nano-FTIR)是一种新兴的超分辨光谱表面分析技术,其以纳米级空间分辨率、宽光谱范围和高化学灵敏性的特点在纳米材料表征研究中展现了巨大的潜力。定性及定量的研究Nano-FTIR信号高空间分辨的来源和系统中光谱信号的提取过程,可以为Nano-FTIR仪器的设计研发和样品光谱表征结果的解释提供重要依据。该研究从典型的仪器结构和基本的工作原理出发,在多物理场有限元分析软件COMSOL中建立了等效研究模型,并对模型的重要细节和数值计算过程分别进行了说明。在仿真研究中,首先基于麦克斯韦电磁波理论计算了模型空间的电磁场增强情况,再模拟了探针在介电常数差异巨大的两种材料交界处的“线扫”过程,探讨了针尖近场增强信号的空间分辨率。随后,以探针与样品的散射功率为数值模型的研究对象,仿真了探针“轻拍”对信号的调制和解调提取的过程,并讨论了不同入射倾角和解调频率对光谱信号提取的影响。最后,为了验证模型的合理性,仿真了20,100和300 nm三种厚度SiO2薄膜样品在900~1 250 cm-1波数范围的光谱响应,并将仿真得到的光谱与实测结果进行了对比。结果表明随着样品厚度的增厚,光谱信号得到相应的增强,模型预测的谱图与实测谱图波形与波峰位置较为一致,且与以往一些文献中采用针尖-样品间电场强度表示针尖处散射信号强弱的方法相比,获得的谱图在峰形上更为接近。提出的数值模型可用于Nano-FTIR光谱的预测,此外,模型也具有一定的通用性,可以为其他基于散射型近场光学显微(s-SNOM)技术的太赫兹光谱技术和针尖增强拉曼光谱研究提供一定的借鉴。  相似文献   

19.
A quinoxaline‐2,3‐dione derivative was synthesized, and its chemical structure was determined through spectral analysis. Alkylation of this compound under phase transfer catalysis (PTC) conditions yielded monoalkylated and diakylated adducts. The monolalkylation process was shown to be regioselective occurring on the quinoxalic nitrogen atom rather than on its pyrazolic analogue. The full characterization of the synthesized compounds was studied by concerted use of NMR and MS techniques. Assignments of proton and carbon atoms were achieved through analysis of the 1D 1H and 13C NMR spectra combined with homo‐ and hetero-nuclear 2D NMR experiments. Determination of the alkylation site was achieved through long‐range proton–carbon coupling correlations spectroscopy.  相似文献   

20.
拉曼光谱物质定性鉴别已被广泛应用于诸多行业和研究领域,但传统拉曼光谱分析过程中的预处理主要依赖人为经验,光谱特征提取虽然能够降低信号维度,同时也会造成部分光谱信息损失。特性相近物质本身光谱相似度较高,受到测量过程中环境干扰和分析过程中多种误差影响,导致最终分类效果并不理想。针对此问题,提出基于一维卷积神经网络(one-dimensional convolution neural network,1D-CNN)的拉曼光谱定性分类方法。实验采集雌酮(Estrone)、雌二醇(Estradiol),雌三醇(Estriol)三种不同雌性激素粉末的拉曼光谱,设计随机平移、添加噪声和随机加权三种光谱数据增强方法,构建数量充足的拉曼光谱数据库用于神经网络模型训练与测试;基于拉曼光谱数据特点提出一维卷积神经网络分类模型,将光谱预处理、特征提取和定性分类的全过程融为一体。通过大量仿真实验,优化所提出的神经网络模型超参数和训练过程并测试分类效果,从预处理对光谱分类结果的影响和模型抗干扰性能两个方面与多种传统拉曼光谱分类算法对比,评价模型性能。实验结果表明,本文提出的一维卷积神经网络模型可实现三类雌性激素粉末拉曼光谱快速准确分类,分类正确率最高可达98.26%,分析过程中无需光谱预处理和特征提取步骤,简化了光谱分析流程,并能保留更多有效信息。同时,当模拟测量噪声强度达到60 dBW时,传统方法分类正确率均明显出现不同程度明显降低,卷积神经网络模型依然能够取得96.81%的分类正确率,说明相比对传统拉曼光谱分类方法,所提出方法受光谱测量噪声影响更小,鲁棒性更强,适用于分析更复杂现场测量的强噪声拉曼光谱信号。该研究结果表明深度学习方法在拉曼光谱的分析与处理领域具有很大的应用潜力和研究价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号