首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A robust adaptive sliding control scheme is developed in this study to achieve synchronization for two identical chaotic systems in the presence of uncertain system parameters, external disturbances and nonlinear control inputs. An adaptation algorithm is given based on the Lyapunov stability theory. Using this adaptation technique to estimate the upper-bounds of parameter variation and external disturbance uncertainties, an adaptive sliding mode controller is then constructed without requiring the bounds of parameter and disturbance uncertainties to be known in advance. It is proven that the proposed adaptive sliding mode controller can maintain the existence of sliding mode in finite time in uncertain chaotic systems. Finally, numerical simulations are presented to show the effectiveness of the proposed control scheme.  相似文献   

2.
In this article, a fuzzy adaptive control scheme is designed to achieve a function vector synchronization behavior between two identical or different chaotic (or hyperchaotic) systems in the presence of unknown dynamic disturbances and input nonlinearities (dead‐zone and sector nonlinearities). This proposed synchronization scheme can be considered as a generalization of many existing projective synchronization schemes (namely the function projective synchronization, the modified projective synchronization, generalized projective synchronization, and so forth) in the sense that the master and slave outputs are assumed to be some general function vectors. To practically deal with the input nonlinearities, the adaptive fuzzy control system is designed in a variable‐structure framework. The fuzzy systems are used to appropriately approximate the uncertain nonlinear functions. A Lyapunov approach is used to prove the boundedness of all signals of the closed‐loop control system as well as the exponential convergence of the corresponding synchronization errors to an adjustable region. The synchronization between two identical systems (chaotic satellite systems) and two different systems (chaotic Chen and Lü systems) are taken as two illustrative examples to show the effectiveness of the proposed method. © 2015 Wiley Periodicals, Inc. Complexity 21: 234–249, 2016  相似文献   

3.
Memristor-based chaotic systems have complex dynamical behaviors, which are characterized as nonlinear and hysteresis characteristics. Modeling and identification of their nonlinear model is an important premise for analyzing the dynamical behavior of the memristor-based chaotic systems. This paper presents a novel nonlinear Wiener adaptive filtering identification approach to the memristor-based chaotic systems. The linear part of Wiener model consists of the linear transversal adaptive filters, the nonlinear part consists of nonlinear adaptive filters based on the backslash operator for the hysteresis characteristics of the memristor. The weight update algorithms for the linear and nonlinear adaptive filters are derived. Final computer simulation results show the effectiveness as well as fast convergence characteristics. Comparing with the adaptive nonlinear polynomial filters, the proposed nonlinear adaptive filters have less identification error.  相似文献   

4.
This paper presents the adaptive anti-synchronization of a class of chaotic complex nonlinear systems described by a united mathematical expression with fully uncertain parameters. Based on Lyapunov stability theory, an adaptive control scheme and adaptive laws of parameters are developed to anti-synchronize two chaotic complex systems. The anti-synchronization of two identical complex Lorenz systems and two different complex Chen and Lü systems are taken as two examples to verify the feasibility and effectiveness of the presented scheme.  相似文献   

5.
A gradient based approach for the design of set-point tracking adaptive controllers for nonlinear chaotic systems is presented. In this approach, Lyapunov exponents are used to select the controller gain. In the case of unknown or time varying chaotic plants, the Lyapunov exponents may vary during the plant operation. In this paper, an effective adaptive strategy is used for online identification of Lyapunov exponents and adaptive control of nonlinear chaotic plants. Also, a nonlinear observer for estimation of the states is proposed. Simulation results are provided to show the effectiveness of the proposed methodology.  相似文献   

6.
In this paper, the problem of synchronizing two chaotic gyros in the presence of uncertainties, external disturbances and dead-zone nonlinearity in the control input is studied while the structure of the gyros, parameters of the dead-zone and the bounds of uncertainties and external disturbances are unknown. The dead-zone nonlinearity in the control input might cause the perturbed chaotic system to show unpredictable behavior. This is due to the high sensitivity of these systems to small changes in their parameters. Thereby, the effect of these issues should not be ignored in the control design for these systems. In order to eliminate the effects from the dead-zone nonlinearity, in this paper, a robust adaptive fuzzy sliding mode control scheme is proposed to overcome the synchronization problem for a class of unknown nonlinear chaotic gyros. The main contribution of our paper in comparison with other works that attempt to solve the problem of dead-zone in the synchronization of chaotic gyros is that we assume that the structure of the system, uncertainties, external disturbances, and dead-zone are fully unknown. Simulation results are provided to illustrate the effectiveness of the proposed method.  相似文献   

7.
针对一类非线性时滞混沌系统,提出了一种新的自适应脉冲同步方案.首先基于Lyapunov稳定性理论、自适应控制理论及脉冲控制理论设计了自适应控制器、脉冲控制器及参数自适应律,然后利用推广的Barbalat引理,理论证明响应系统与驱动系统全局渐近同步,并给出了相应的充分条件.方案利用参数逼近Lipschitz常数,从而取消了Lipschitz常数已知的假设.两个数值仿真例子表明本方法的有效性.  相似文献   

8.
A dynamic strategy is proposed to estimate parameters of chaotic systems. The dynamic estimator of parameters can be used with diverse control functions; for example, those based on: (i) Lie algebra, (ii) backstepping, or (iii) variable feedback structure (sliding-mode). The proposal has adaptive structure because of interaction between dynamic estimation of parameters and a feedback control function. Without lost of generality, a class of dynamical systems with chaotic behavior is considered as benchmark. The proposed scheme is compared with a previous low-parameterized robust adaptive feedback in terms of execution and performance. The comparison is motivated to ask: What is the suitable adaptive scheme to suppress chaos in an specific implementation? Experimental results of proposed scheme are discussed in terms of control execution and performance and are relevant in specific implementations; for example, in order to induce synchrony in complex networks.  相似文献   

9.
This paper deals with the design of a robust adaptive control scheme for chaos suppression of a class of chaotic systems. We assume that model uncertainties and external disturbances disturb the system’s dynamics. The bounds of both model uncertainties and external disturbances are assumed to be unknown in advance. Moreover, it is assumed that the nonlinear terms of the chaotic system dynamics are unknown bounded. Based on the global boundedness feature of the chaotic systems’ trajectories, a simple one input adaptive sliding mode control approach is proposed to suppress the chaos of the uncertain chaotic system. Furthermore, using a dynamical sliding manifold the discontinuous sign function in the control input is diverted to the first derivative of the control input to eliminate the chattering. Finally, the robustness of the proposed approach is mathematically proved and numerically illustrated.  相似文献   

10.
This work presents an adaptive sliding mode control scheme to elucidate the robust chaos suppression control of non-autonomous chaotic systems. The proposed control scheme utilizes extended systems to ensure that continuous control input is obtained in order to avoid chattering phenomenon as frequently in conventional sliding mode control systems. A switching surface is adopted to ensure the relative ease in stabilizing the extended error dynamics in the sliding mode. An adaptive sliding mode controller (ASMC) is then derived to guarantee the occurrence of the sliding motion, even when the chaotic horizontal platform system (HPS) is undergoing parametric uncertainties. Based on Lyapunov stability theorem, control laws are derived. In addition to guaranteeing that uncertain horizontal platform chaotic systems can be stabilized to a steady state, the proposed control scheme ensures asymptotically tracking of any desired trajectory. Furthermore, the numerical simulations verify the accuracy of the proposed control scheme, which is applicable to another chaotic system based on the same design scheme.  相似文献   

11.
In this paper, a robust adaptive neural network synchronization controller is proposed for two chaotic systems with input time delay and uncertainty. The studied chaotic system may possess a wide class of nonlinear time-delayed input uncertainty. The radial basis function (RBF) neural network is used to approximate the unknown continuous bounded function item of the time delay uncertainty via appropriate weight value updated law. With the output of RBF neural network, a robust adaptive synchronization control scheme is presented for the time delay uncertain chaotic system. Finally, a simulation example is used to illustrate the effectiveness of the proposed synchronization control scheme.  相似文献   

12.
A robust adaptive fuzzy control scheme is presented for a class of chaotic systems with nonaffine inputs, modeling uncertainties and external disturbances by using backstepping approach. Fuzzy logic systems (FLS) are employed to approximate the unknown parts of the virtual control and practical controls. The main characteristics of the scheme are that the number of the online adaptive parameters is no more than two times of the order of chaotic system and the tracking errors are guaranteed to be uniformly asymptotically stable with the aid of additional adaptive compensation terms. Lorenz system, Chen system, Lü system and Liu system are presented to illustrate the feasibility and effectiveness of the proposed control technique.  相似文献   

13.
This paper deals with the tracking control of nonlinear chaotic systems with dynamics uncertainties. A robust control strategy is developed to control a class of nonlinear chaotic systems with uncertainties. The proposed strategy is an input-output control scheme which comprises an uncertainty estimator and a linearizing-like feedback. The control time is explicitly computed. Computer simulations of the Duffing system are provided to verify the validity of the proposed control scheme.  相似文献   

14.
This work presents the synchronization between two different chaotic systems by using an adaptive feedback control scheme. The adaptive synchronization problem between an electrostatic system and electromechanical transducer has been investigated. An adaptive linear feedback law with two controllers is proposed to ensure the global chaos synchronization of the nonlinear electrostatic and electromechanical systems. Numerical simulations results are presented to demonstrate the effectiveness of the proposed method.  相似文献   

15.
This paper addresses the design of adaptive feedback controllers for two problems (namely, stabilization and synchronization) of chaotic systems with unknown parameters by considering input saturation constraints. A novel generalized sector condition is developed to deal with the saturation nonlinearities for synthesizing the nonlinear and the adaptive controllers for the stabilization and synchronization control objectives. By application of the proposed sector condition and rigorous regional stability analysis, control and adaptation laws are formulated to guarantee local stabilization of a nonlinear system under actuator saturation. Further, simple control and adaptation laws are developed to synchronize two chaotic systems under uncertain parameters and input saturation nonlinearity. Numerical simulation results for Rössler and FitzHugh–Nagumo models are provided to demonstrate the effectiveness of the proposed adaptive stabilization and synchronization control methodologies.  相似文献   

16.
This paper presents a fuzzy algorithm for controlling chaos in nonlinear systems via minimum entropy approach. The proposed fuzzy logic algorithm is used to minimize the Shannon entropy of a chaotic dynamics. The fuzzy laws are determined in such a way that the entropy function descends until the chaotic trajectory of the system is replaced by a regular one. The Logistic and the Henon maps as two discrete chaotic systems, and the Duffing equation as a continuous one are used to validate the proposed scheme and show the effectiveness of the control method in chaotic dynamical systems.  相似文献   

17.
In this paper, a robust intelligent sliding model control (RISMC) scheme using an adaptive recurrent cerebellar model articulation controller (RCMAC) is developed for a class of uncertain nonlinear chaotic systems. This RISMC system offers a design approach to drive the state trajectory to track a desired trajectory, and it is comprised of an adaptive RCMAC and a robust controller. The adaptive RCMAC is used to mimic an ideal sliding mode control (SMC) due to unknown system dynamics, and a robust controller is designed to recover the residual approximation error for guaranteeing the stable characteristic. Moreover, the Taylor linearization technique is employed to derive the linearized model of the RCMAC. The all adaptation laws of the RISMC system are derived based on the Lyapunov stability analysis and projection algorithm, so that the stability of the system can be guaranteed. Finally, the proposed RISMC system is applied to control a Van der Pol oscillator, a Genesio chaotic system and a Chua’s chaotic circuit. The effectiveness of the proposed control scheme is verified by some simulation results with unknown system dynamics and existence of external disturbance. In addition, the advantages of the proposed RISMC are indicated in comparison with a SMC system.  相似文献   

18.
This paper investigates the modified function projective synchronization (MFPS) between two different dimensional chaotic systems with fully unknown or partially unknown parameters via increased order. Based on the Lyapunov stability theorem and adaptive control method, a unified adaptive controller and parameters update law can be designed for achieving the MFPS of the two different chaotic systems with different orders. Numerical simulations are presented to show the effectiveness of the proposed synchronization scheme.  相似文献   

19.
This paper addresses the problem of adaptive stabilization of uncertain unified chaotic systems with nonlinear input in the sector form. A novel representation of nonlinear input function, that is, a linear input with bounded time-varying coefficient, is firstly established. Then, an adaptive control scheme is proposed based on the new nonlinear input model. By using Barbalat’s lemma, the asymptotic stability of the closed-loop system is proved in spite of system uncertainties, external disturbance and input nonlinearity. One of the advantages of the proposed design method is that the prior knowledge on the plant parameter, the bound parameters of the uncertainties and the slope parameters inside the sector nonlinearity is not required. Finally, numerical simulations are performed to verify the analytical results.  相似文献   

20.
Many works on hybrid projective synchronization (or simply ‘HPS’ for short) of nonlinear real dynamic systems have been performed, while the HPS of chaotic complex systems and its application have not been extensively studied. In this paper, the HPS of complex Duffing–Holmes oscillators with known and unknown parameters is separately investigated via nonlinear control. The adaptive control methods and explicit expressions are derived for controllers and parameters estimation law, which are respectively used to achieve HPS. These expressions on controllers are tested numerically, which are in excellent agreement with theory analysis. The proposed synchronization scheme is applied to image encryption with exclusive or (or simply ‘XOR’ for short). The related security analysis shows the high security of the encryption scheme. Concerning the complex Duffing–Holmes oscillator, we also discuss its chaotic properties via the maximum Lyapunov exponent. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号