首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sui LZ  Yang WW  Yao CJ  Xie HY  Zhong YW 《Inorganic chemistry》2012,51(3):1590-1598
A dimetallic biscyclometalated ruthenium complex, [(bpy)(2)Ru(dpb)Ru(bpy)(2)](2+) (bpy = 2,2'-bipyridine; dpb = 1,4-di-2-pyridylbenzene), with a tris-bidentate coordination mode has been prepared. The electronic properties of this complex were studied by electrochemical and spectroscopic analysis and DFT/TDDFT calculations on both rac and meso isomers. Complex [(bpy)(2)Ru(dpb)Ru(bpy)(2)](2+) has a similar 1,4-benzenedicyclometalated ruthenium (Ru-phenyl-Ru) structural component with a previously reported bis-tridentate complex, [(tpy)Ru(tpb)Ru(tpy)](2+) (tpy = 2,2';6',2″-terpyridine; tpb = 1,2,4,5-tetra-2-pyridylbenzene). The charge delocalizations of these complexes across the Ru-phenyl-Ru array were investigated and compared by studying the corresponding one-electron-oxidized species, generated by chemical oxidation or electrochemical electrolysis, with DFT/TDDFT calculations and spectroscopic and EPR analysis. These studies indicate that both [(bpy)(2)Ru(dpb)Ru(bpy)(2)](3+) and [(tpy)Ru(tpb)Ru(tpy)](3+) are fully delocalized systems. However, the coordination mode of the metal component plays an important role in influencing their electronic properties.  相似文献   

2.
We report the synthesis, structure and properties of the cyanide-bridged dinuclear complex ions [Ru(L)(bpy)(μ-NC)M(CN)(5)](2-/-) (L = tpy, 2,2';6',2'-terpyridine, or tpm, tris(1-pyrazolyl)methane, bpy = 2,2'-bipyridine, M = Fe(II), Fe(III), Cr(III)) and the related monomers [Ru(L)(bpy)X](2+) (X = CN(-) and NCS(-)). All the monomeric compounds are weak MLCT emitters (λ = 650-715 nm, ? ≈ 10(-4)). In the Fe(II) and Cr(III) dinuclear systems, the cyanide bridge promotes efficient energy transfer between the Ru-centered MLCT state and a Fe(II)- or Cr(III)-centered d-d state, which results either in a complete quenching of luminescence or in a narrow red emission (λ ≈ 820 nm, ? ≈ 10(-3)) respectively. In the case of Fe(III) dinuclear systems, an electron transfer quenching process is also likely to occur.  相似文献   

3.
Mononuclear ruthenium complexes and dinuclear Ru...Pd complexes having a series of 2,2'-bipyrimidine ligands, [(bpy)2Ru(Ln)]2+ [Ln = 2,2'-bipyrimidine (L1), 5,5'-dimethyl-2,2'-bipyrimidine (L2), 5,5'-dibromo-2,2'-bipyrimidine (L3), 4,4'-dimethyl-2,2'-bipyrimidine (L4), and 4,4',6,6'-tetramethyl- 2,2'-bipyrimidine (L5)] and [(bpy)2Ru(Ln)PdL]m+ [Ln = L1-L3; PdL = PdMeCl (m = 2) and PdMe(solvent) (m = 3)], are prepared, and the obtained complexes are characterized by means of spectroscopic and crystallographic methods. Introduction of the substituents on the bipyrimidine ligands led to the substantial differences in their electrochemical and photophysical properties. Density functional theory calculations have been performed to understand the substituent effect on the ground-state molecular orbital energy level. Reactivity studies on the catalytic dimerization of alpha-methylstyrene revealed that the Pd complex having a Br-substituted bipyrimidine ligand were much more active than those of the corresponding Pd complexes having methyl-substituted or nonsubstituted bipyrimidine ligands.  相似文献   

4.
The dinuclear complexes [(tpy)Ru(tppz)Ru(bpy)(L)](n+) (where L is Cl(-) or H(2)O, tpy and bpy are the terminal ligands 2,2':6',2'-terpyridine and 2,2'-bipyridine, and tppz is the bridging backbone 2,3,5,6-tetrakis(2-pyridyl)pyrazine) were prepared and structurally and electronically characterized. The mononuclear complexes [(tpy)Ru(tppz)](2+) and [(tppz)Ru(bpy)(L)](m+) were also prepared and studied for comparison. The proton-coupled, multi-electron photooxidation reactivity of the aquo dinuclear species was shown through the photocatalytic dehydrogenation of a series of primary and secondary alcohols. Under simulated solar irradiation and in the presence of a sacrificial electron acceptor, the photoactivated chromophore-catalyst complex (in aqueous solutions at room temperature and ambient pressure conditions) can perform the visible-light-driven conversion of aliphatic and benzylic alcohols into the corresponding carbonyl products (i.e., aldehydes or ketones) with 100% product selectivity and several tens of turnover cycles, as probed by NMR spectroscopy and gas chromatography. Moreover, for aliphatic substrates, the activity of the photocatalyst was found to be highly selective toward secondary alcohols, with no significant product formed from primary alcohols. Comparison of the activity of this tppz-bridged complex with that of the analogue containing a back-to-back terpyridine bridge (tpy-tpy, i.e., 6',6'-bis(2-pyridyl)-2,2':4',4':2',2'-quaterpyridine) demonstrated that the latter is a superior photocatalyst toward the oxidation of alcohols. The much stronger electronic coupling with significant delocalization across the strongly electron-accepting tppz bridge facilitates charge trapping between the chromophore and catalyst centers and therefore is presumably responsible for the decreased catalytic performance.  相似文献   

5.
We report the preparation of complexes in which ruthenium(II) bis(bipyridyl) groups are coordinated to oligothiophenes via a diphenylphosphine linker and a thienyl sulfur (P,S bonding) to give [Ru(bpy)(2)PT(3)-P,S](PF(6))(2) (bpy = 2,2'-bipyridyl, PT(3) = 3'-(diphenylphosphino)-2,2':5',2' '-terthiophene), [Ru(bpy)(2)PMeT(3)-P,S](PF(6))(2) (PMeT(3) = 3'-(diphenylphosphino)-5-methyl-2,2':5',2' '-terthiophene), [Ru(bpy)(2)PMe(2)T(3)-P,S](PF(6))(2) (PMe(2)T(3) = 5,5' '-dimethyl-3'-(diphenylphosphino)-2,2':5',2' '-terthiophene), and [Ru(bpy)(2)PDo(2)T(5)-P,S](PF(6))(2) (PDo(2)T(5) = 3,3' ' '-didodecyl-3' '-diphenylphosphino-2,2':5',2' ':5' ',2' ':5' ',2' ' '-pentathiophene). These complexes react with base, resulting in the complexes [Ru(bpy)(2)PT(3)-P,C]PF(6), [Ru(bpy)(2)PMeT(3)-P,C]PF(6), [Ru(bpy)(2)PMe(2)T(3)-P,C]PF(6), and [Ru(bpy)(2)PDo(2)T(5)-P,C]PF(6), where the thienyl carbon is bonded to ruthenium (P,C bonding). The P,C complexes revert back to the P,S bonding mode by reaction with acid; therefore, metal-thienyl bonding is reversibly switchable. The effect of interaction of the metal groups in the different bonding modes with the thienyl backbone is reflected by changes in alignment of the thienyl rings in the solid-state structures of the complexes, the redox potentials, and the pi --> pi transitions in solution. Methyl substituents attached to the terthiophene groups allow observation of the effect of these substituents on the conformational and electronic properties and aid in assignments of the electrochemical data. The PT(n)() ligands bound in P,S and P,C bonding modes also alter the electrochemical and spectroscopic properties of the ruthenium bis(bipyridyl) group. Both bonding modes result in quenching of the oligothiophene luminescence. Weak, short-lived Ru --> bipyridyl MLCT-based luminescence is observed for [Ru(bpy)(2)PDo(2)T(5)-P,S](PF(6))(2), [Ru(bpy)(2)PT(3)-P,C]PF(6), [Ru(bpy)(2)PMeT(3)-P,C]PF(6), and [Ru(bpy)(2)PMe(2)T(3)-P,C]PF(6), and no emission is observed for the alternate bonding mode of each complex.  相似文献   

6.
We have studied the interfacial electron-transfer dynamics on TiO(2) film sensitized with synthesized ruthenium(II)-polypyridyl complexes--[Ru(II)(bpy)(2)(L(1))] (1) and [Ru(II)(bpy)(L(1))(L(2))] (2), in which bpy=2,2'-bipyridyl, L(1)=4-[2-(4'-methyl-2,2'-bipyridinyl-4-yl)vinyl]benzene-1,2-diol, and L(2)=4-(N,N-dimethylaminophenyl)-2,2'-bipyridine-by using femtosecond transient absorption spectroscopy. The presence of electron-donor L(2) and electron-acceptor L(1) ligands in complex 2 introduces lower energetic ligand-to-ligand charge-transfer (LLCT) excited states in addition to metal-to-ligand (ML) CT manifolds of complex 2. On photoexcitation, a pulse-width-limited (<100 fs) electron injection from populating LLCT and MLCT states are observed on account of strong catecholate binding on the TiO(2) surface. The hole is transferred directly or stepwise to the electron-donor ligand (L(2)) as a consequence of electron injection from LLCT and MLCT states, respectively. This results an increased spatial charge separation between the hole residing at the electron-donor (L(2)) ligand and the electron injected in TiO(2) nanoparticles (NPs). Thus, we observed a significant slow back-electron-transfer (BET) process in the 2/TiO(2) system relative to the 1/TiO(2) system. Our results suggest that Ru(II) -polypyridyl complexes comprising LLCT states can be a better photosensitizer for improved electron injection yield and slow BET processes in comparison with Ru(II)-polypyridyl complexes comprising MLCT states only.  相似文献   

7.
Lo KK  Lee TK 《Inorganic chemistry》2004,43(17):5275-5282
Two luminescent ruthenium(II) polypyridine complexes containing a biotin moiety [Ru(bpy)(2)(L1)](PF(6))(2) (1) and [Ru(bpy)(2)(L2)](PF(6))(2) (2) (bpy = 2,2'-bipyridine; L1 = 4-(N-((2-biotinamido)ethyl)amido)-4'-methyl-2,2'-bipyridine; L2 = 4-(N-((6-biotinamido)hexyl)amido)-4'-methyl-2,2'-bipyridine) have been synthesized and characterized, and their photophysical and electrochemical properties have been studied. Upon photoexcitation, complexes 1 and 2 display intense and long-lived triplet metal-to-ligand charge-transfer ((3)MLCT) (dpi(Ru) --> pi*(L1 or L2)) emission in fluid solutions at 298 K and in low-temperature glass. We have studied the binding of these ruthenium(II) biotin complexes to avidin by 4'-hydroxyazobenzene-2-carboxylic acid (HABA) assays, luminescence titrations, competitive assays using native biotin, and quenching experiments using methyl viologen. On the basis of the results of these experiments, a homogeneous competitive assay for biotin has been investigated.  相似文献   

8.
The synthesis and analysis of a new amide-linked, dinuclear [Ru(bpy)(2)(bpy-ph-NH-CO-trpy)Ru(bpy)(OH(2))](4+) (bpy = 2,2'-bipyridine; bpy-ph-NH-CO-trpy = 4-(2,2':6',2"-terpyridin-4'-yl)-N-[(4'-methyl-2,2'-bipyridin-4-yl)methyl]benzamide) assembly that incorporates both a light-harvesting chromophore and a water oxidation catalyst are described. With the saturated methylene linker present, the individual properties of both the chromophore and catalyst are retained including water oxidation catalysis and relatively slow energy transfer from the chromophore excited state to the catalyst.  相似文献   

9.
We have synthesized ruthenium(II) polypyridyl complexes (1) Ru(II)(bpy)(2)(L(1)), (2) Ru(II)(bpy)(2)(L(2)) and (3) Ru(II)(bpy)(L(1))(L(2)), where bpy = 2,2'-bipyridyl, L(1) = 4-[2-(4'-methyl-2,2'-bipyridinyl-4-yl)vinyl]benzene-1,2-diol) and L(2) = 4-(N,N-dimethylamino-phenyl)-(2,2'-bipyridine) and investigated the intra-ligand charge transfer (ILCT) and ligand-ligand charge transfer (LLCT) states by optical absorption and emission studies. Our studies show that the presence of electron donating -NMe(2) functionality in L(2) and electron withdrawing catechol fragment in L(1) ligands of complex 3 introduces low energy LLCT excited states to aboriginal MLCT states. The superimposed LLCT and MLCT state produces redshift and broadening in the optical absorption spectra of complex 3 in comparison to complexes 1 and 2. The emission quantum yield of complex 3 is observed to be extremely low in comparison to that of complex 1 and 2 at room temperature. This is attributed to quenching of the (3)MLCT state by the low-emissive (3)LLCT state. The emission due to ligand localized CT state (ILCT and LLCT) of complexes 2 and 3 is revealed at 77 K in the form of a new luminescence band which appeared in the 670-760 nm region. The LLCT excited state of complex 3 is populated either via direct photoexcitation in the LLCT absorption band (350-700 nm) or through internal conversion from the photoexcited (3)MLCT (400-600 nm) states. The internal conversion rate is determined by quenching of the (3)MLCT state in a time resolved emission study. The internal conversion to LLCT and ILCT excited states are observed to be as fast as ~200 ps and ~700 ps for complexes 3 and 2, respectively. The present study illustrates the photophysical property of the ligand localized excited state of newly synthesized heteroleptic ruthenium(II) polypyridyl complexes.  相似文献   

10.
Nanocrystalline thin films of TiO2 cast on an optically transparent indium tin oxide glass were sensitized with ruthenium homo- and heterobinuclear complexes, [LL'Ru(BL)RuLL']n+ (n = 2, 3), where L and L' are 4,4'-dicarboxy-2,2'-bipyridine (dcb) and/or 2,2'-bipyridine (bpy) and BL is a rigid and linear heteroaromatic entity (tetrapyrido[3,2-a:2',3'-c:3",2"-h:2'",3'"-j]phenazine (tpphz) or 1,4-bis([1,10]phenanthroline[5,6-d]imidazol-2-yl)benzene (bfimbz)). The photophysical behavior of the RuII-RuII diads in solution indicated the occurrence of intercomponent energy transfer from the upper-lying Ru --> bpy charge-transfer (CT) excited state of the Ru(bpy)(2) moiety to the lower-lying Ru --> dcb CT excited state of the Ru(bpy)(dcb) (or Ru(dcb)(2)) subunit in the heterobinuclear complexes. These sensitizer diads adsorbed on nanostructured TiO2 surfaces in a perpendicular or parallel attachment mode. Adsorption was through the dcb ligands on one or both chromophoric subunits. The behavior of the adsorbed species was studied by nanosecond time-resolved transient absorption and emission spectroscopy, as well as by photocurrent measurements. In the TiO2-adsorbed samples where BL was bfimbz, the electron injection kinetics was very fast and could not be resolved because an electron is promoted from the metal center to the dcb ligand directly linked to the semiconductor. In the TiO2-adsorbed samples where BL was tpphz, for which, in the excited state, a BL localization of the lowest-lying metal-to-ligand charge transfer (MLCT) is observed, slower injection rates (9.5 x 10(7) s(-1) in [(bpy)(2)Ru(tpphz)Ru(bpy)(dcb(-))](3+)/TiO2 and 5.5 x 10(7) s(-1) in [(bpy)(dcb)Ru(tpphz)Ru(bpy)(dcb(-))](3+)/TiO2) were obtained. Among the systems, the heterotriad assembly [(bpy)(2)Ru(bfimbz)Ru(bpy)(dcb(2-))](2+)/TiO2 gave the best photovoltaic performance. In the first case, this was attributed to a fast electron injection initiated from a dcb-localized MLCT; in the second case, this is attributed to improved molecular orientation on the surface, which was due to rigidity and, at the same time, linearity of the heterotriad system, resulting in a slower charge recombination between the injected electron and the hole.  相似文献   

11.
Two Ru(II) complexes, [Ru(bpy)2L](ClO4)2 (1) and [Ru(bpy)2L'](BF4)2 (2), where bpy is 2,2'-bipyridine, L is diacetyl dihydrazone, and L' 1:2 is the condensate of L and acetone, are synthesized. From X-ray crystal structures, both are found to contain distorted octahedral RuN(6)(2+) cores. NMR spectra show that the cations in 1 and 2 possess a C2 axis in solution. They display the expected metal-to-ligand charge transfer (1MLCT) band in the 400-500 nm region. Complex 1 is nonemissive at room temperature in solution as well as at 80 K. In contrast, complex 2 gives rise to an appreciable emission upon excitation at 440 nm. The room-temperature emission is centered at 730 nm (lambda(em)(max)) with a quantum yield (Phi(em)) of 0.002 and a lifetime (tau(em)) of 42 ns in an air-equilibrated methanol-ethanol solution. At 80 K, Phi(em) = 0.007 and tau(em) = 178 ns, with a lambda(em)(max) of 690 nm, which is close to the 0-0 transition, indicating an 3MLCT excited-state energy of 1.80 eV. The radiative rate constant (5 x 10(4) s(-1)) at room temperature and 80 K is almost temperature independent. From spectroelectrochemistry, it is found that bpy is easiest to reduce in 2 and that L is easiest in 1. The implications of this are that in 2 the lowest (3)MLCT state is localized on a bpy ligand and in 1 it is localized on L. Transient absorption results also support these assignments. As a consequence, even though 2 shows a fairly strong and long-lived emission from a Ru(II) --> bpy CT state, the Ru(II) --> L CT state in 1 shows no detectable emission even at 80 K.  相似文献   

12.
1H NMR spectroscopy and molecular modelling have been used to investigate the binding of the DeltaDelta-and LambdaLambda-enantiomers of the dinuclear ruthenium(II) complex [[Ru(Me2bpy)2]2(mu-bpm)]4+ [Me2bpy = 4,4'-dimethyl-2,2'-bipyridine; bpm = 2,2'-bipyrimidine] to an RNA tridecanucleotide duplex containing a single-base bulge [r(CCGAGAAUUCCGG)2]], and the corresponding control dodecanucleotide [r(CCGGAAUUCCGG)2]. Both enantiomers bound the control RNA sequence weakly. From upfield shifts of the metal complex H3 and H3' protons throughout the titration of the control dodecanucleotide with DeltaDelta-[[Ru(Me2bpy)2]2(mu-bpm)]4+, a binding constant of 1 x 10(3) M(-1) was determined. In NOESY spectra of the control sequence with added DeltaDelta-[[Ru(Me2bpy)2]2(mu-bpm)]4+, NOEs were only observed to protons from the terminal base-pair residues. No significant changes in chemical shift were observed for either the metal complex or RNA protons upon addition of the LambdaLambda-enantiomer to the control dodecanucleotide. The DeltaDelta-[[Ru(Me2bpy)2]2(mu-bpm)]4+ complex bound the bulge-containing RNA with a significantly greater affinity (6 x 10(4) M(-1)) than the non-bulge control RNA duplex. Competition binding experiments indicated that the LambdaLambda-isomer bound the tridecanucleotide with similar affinity to the DeltaDelta-enantiomer. Addition of DeltaDelta-[[Ru(Me2bpy)2]2(mu-bpm)]4+ to the bulge-containing tridecanucleotide induced selective changes in chemical shift for the base H8 and sugar H1' resonances from the adenine bulge residue, and resonances from nucleotide residues adjacent to the bulge site. Intermolecular NOEs observed in NOESY spectra of the tridecanucleotide with added DeltaDelta-[[Ru(Me2bpy)2]2(mu-bpm)]4+ confirmed the selective binding of the ruthenium complex at the bulge site. Preliminary binding models, consistent with the NMR data, showed that the ruthenium complex could effectively associate in the RNA minor groove at the bulge site.  相似文献   

13.
The present work reports an attempt to elucidate a stereoselective energy-transfer system by immobilizing a chiral metal complex on a clay surface. The metal complex used was [Ru(bpy)2L(i)]2+ with L1 = bpy (2,2'-bipyridine), L2 = 4,4'-diundecyl-2,2'-bipyridine, and L3 = 5,5'-diundecyl-2,2'-bipyridine. The adsorption structure of [Ru(bpy)2L(i)]2+ was studied by means of electric dichroism measurements on an aqueous dispersion of a colloidal clay. It was found that the molecular orientation of the adsorbed Ru(II) complex was affected remarkably by the positions of the alkyl chains on the bpy ligand; that is, the angle of the 3-fold or pseudo-3-fold symmetry axis of the Ru(II) complex with respect to the surface normal was obtained to be 24 degrees, 30 degrees, and 52 degrees for i = 1, 2, and 3, respectively. The efficiency of the energy-transfer was determined by photoluminescence quenching measurements between the adsorbed Ru(II) complex and [Ru(acac)3] (acac = acetylacetonate) in solution. As a result, stereoselectivity appeared most for the case of [Ru(bpy)2L3]2+ in which its two helically twisted bpy ligands were projected in an outward direction.  相似文献   

14.
Nanocrystalline (anatase), mesoporous TiO2 thin films were functionalized with [Ru(bpy)2(deebq)](PF6)2, [Ru(bq)2(deeb)](PF6)2, [Ru(deebq)2(bpy)](PF6)2, [Ru(bpy)(deebq)(NCS)2], or [Os(bpy)2(deebq)](PF6)2, where bpy is 2,2'-bipyridine, bq is 2,2'-biquinoline, and deeb and deebq are 4,4'-diethylester derivatives. These compounds bind to the nanocrystalline TiO2 films in their carboxylate forms with limiting surface coverages of 8 (+/- 2) x 10(-8) mol/cm2. Electrochemical measurements show that the first reduction of these compounds (-0.70 V vs SCE) occurs prior to TiO2 reduction. Steady state illumination in the presence of the sacrificial electron donor triethylamine leads to the appearance of the reduced sensitizer. The thermally equilibrated metal-to-ligand charge-transfer excited state and the reduced form of these compounds do not inject electrons into TiO2. Nanosecond transient absorption measurements demonstrate the formation of an extremely long-lived charge separated state based on equal concentrations of the reduced and oxidized compounds. The results are consistent with a mechanism of ultrafast excited-state injection into TiO2 followed by interfacial electron transfer to a ground-state compound. The quantum yield for this process was found to increase with excitation energy, a behavior attributed to stronger overlap between the excited sensitizer and the semiconductor acceptor states. For example, the quantum yields for [Os(bpy)2(dcbq)]/TiO2 were phi(417 nm) = 0.18 +/- 0.02, phi(532.5 nm) = 0.08 +/- 0.02, and phi(683 nm) = 0.05 +/- 0.01. Electron transfer to yield ground-state products occurs by lateral intermolecular charge transfer. The driving force for charge recombination was in excess of that stored in the photoluminescent excited state. Chronoabsorption measurements indicate that ligand-based intermolecular electron transfer was an order of magnitude faster than metal-centered intermolecular hole transfer. Charge recombination was quantified with the Kohlrausch-Williams-Watts model.  相似文献   

15.
The compound Ru(bpy)2(dppz-R)(PF6)2, where bpy is 2,2'-bipyridine and dppz-R is 11-(diethoxyphosphorylmethyl)dipyrido[3,2-a:2',3'-c]phenazine, was prepared and anchored to mesoporous nanocrystalline (anatase) TiO2 thin films as a probe of the effects of interfacial water on excited-state charge transfer processes at semiconductor interfaces. In nitrogen-saturated fluid acetonitrile, the Ru(bpy)2(dppz-R)(PF6)2 compound was found to be highly photoluminescent. Water was found to quench the excited state by a mechanism adequately described by the Perrin model, from which the radius of quenching was abstracted, 75 +/- 2 A. The Ru(bpy)2(dppz-R)(PF6)2 compounds were found to bind to the TiO2 thin films in high surface coverages, 5 x 10(-8) mol cm(-2). When these films were immersed in acetonitrile, long-lived excited states (tau = 825 ns) that were quenched by the addition of water were observed. About 30% of the excited states could not be quenched by water. Efficient electron injection, phi(inj) = 0.8, was observed after light excitation of Ru(bpy)2(dppz-R)/TiO2 in a 0.1 M LiClO4/acetonitrile solution. The addition of large concentrations of water, >0.5 M, was found to decrease the injection yield to phi(inj) = 0.3.  相似文献   

16.
The lowest energy metal-to-ligand charge transfer (MLCT) absorption bands found in ambient solutions of a series of [Ru(tpy)(bpy)X](m+) complexes (tpy = 2,2':3',2'-terpyridine; bpy = 2,2'-bipyridine; and X = a monodentate ancillary ligand) feature one or two partly resolved weak absorptions (bands I and/or II) on the low energy side of their absorption envelopes. Similar features are found for the related cyanide-bridged bi- and trimetallic complexes. However, the weak absorption band I of [(bpy)(2)Ru{CNRu(tpy)(bpy)}(2)](4+) is missing in its [(bpy)(2)Ru{NCRu(tpy)(bpy)}(2)](4+) linkage isomer demonstrating that this feature arises from a Ru(II)/tpy MLCT absorption. The energies of the MLCT band I components of the [Ru(tpy)(bpy)X](m+) complexes are proportional to the differences between the potentials for the first oxidation and the first reduction waves of the complexes. Time-dependent density functional theory (TD-DFT) computational modeling indicates that these band I components correspond to the highest occupied molecular orbital (HOMO) to lowest unoccupied molecular orbital (LUMO) transition, with the HOMO being largely ruthenium-centered and the LUMO largely tpy-centered. The most intense contribution to a lowest energy MLCT absorption envelope (band III) of these complexes corresponds to the convolution of several orbitally different components, and its absorption maximum has an energy that is about 5000 cm(-1) higher than that of band I. The multimetallic complexes that contain Ru(II) centers linked by cyanide have mixed valence excited states in which more than 10% of electronic density is delocalized between the nearest neighbor ruthenium centers, and the corresponding stabilization energy contributions in the excited states are indistinguishable from those of the corresponding ground states. Single crystal X-ray structures and computational modeling indicate that the Ru-(C≡N)-Ru linkage is quite flexible and that there is not an appreciable variation in electronic structure or energy among the conformational isomers.  相似文献   

17.
Two series of photosensitizer-electron acceptor complexes have been synthesized and fully characterized: ruthenium(II) tris(bipyridine) ([Ru(II)(bpy)(2)(bpy-X-NDI)], where X = -CH(2)-, tolylene, or phenylene, bpy is 2,2'-bipyridine, and NDI is naphthalenediimide) and ruthenium(II) bis(terpyridine) ([Ru(II)(Y-tpy)(tpy-X-NDI)], where Y = H or tolyl and X = tolylene or phenylene, and tpy = 2,2':6',2' '-terpyridine). The complexes have been studied by cyclic and differential pulse voltammetry and by steady state and time-resolved absorption and emission techniques. Rates for forward and backward electron transfer have been investigated, following photoexcitation of the ruthenium(II) polypyridine moiety. The terpyridine complexes were only marginally affected by the linked diimide unit, and no electron transfer was observed. In the bipyridine complexes we achieved efficient charge separation. For the complexes containing a phenyl link between the ruthenium(II) and diimide moieties, our results suggest a biphasic forward electron-transfer reaction, in which 20% of the charge-separated state was formed via population of the naphthalenediimide triplet state.  相似文献   

18.
The unique behavior of a new Ru(II) diimine complex, Ru(bpy)(2)(L)(2+) (where L is 4-methyl-4'-[p-(dimethyl- amino)-alpha-styryl]-2,2'-bipyridine, bpy is 2,2'-bipyridine), was studied in detail. Due to the strong electron donating property of the amino group, an ILCT (intraligand charge transfer) state is involved either in the absorption spectra or in the time-resolved emission spectra. Dual emission based on (3)MLCT and (3)ILCT states was observed at room temperature for the first time via a time-resolved technique in Ru(II) diimine complexes.  相似文献   

19.
The complexes [[Ru(ttp)(bpy)](2)(micro-adpc)][PF(6)](2) and [[Ru(ttp)(bpy)](2)(micro-dicyd)][PF(6)](2), where ttp is 4-toluene-2,2':6',2' '-terpyridine, bpy is 2,2'-bipyridine, adpc(2)(-) is azodi(phenylcyanamide), and dicyd(2)(-) is 1,4-dicyanamidebenzene, were prepared and characterized by IR and NIR, vis spectroelectrochemistry, and cyclic voltammetry. The crystal structure of the complex, [[Ru(ttp)(bpy)](2)(micro-adpc)][PF(6)](2).6DMF, revealed a planar bridging adpc(2)(-) ligand with the cyanamide groups adopting an anti configuration. IR and comproportionation data are consistent with delocalized mixed-valence complexes, and a spectroscopic analysis assuming C(2)(h) microsymmetry leads to a prediction of multiple MMCT transitions with the lowest energy transition equal to the resonance exchange integral for the mixing of ruthenium donor and acceptor orbitals with a bridging ligand orbital (the preferred superexchange pathway). The solvent dependence of the MMCT band energy that is seen for [[Ru(ttp)(bpy)](2)(micro-adpc)](3+) is due to a ground state weakening of metal-metal coupling because of solvent donor interactions with the acceptor azo group of the bridging ligand.  相似文献   

20.
Sun Y  Hudson ZM  Rao Y  Wang S 《Inorganic chemistry》2011,50(8):3373-3378
Four new Ru(II) complexes, [Ru(bpy)(2)(4,4'-BP2bpy)][PF(6)](2) (1), [Ru(t-Bu-bpy)(2)(4,4'-BP2bpy)][PF(6)](2) (2), [Ru(bpy)(2)(5,5'-BP2bpy)][PF(6)](2) (3), and [Ru(t-Bu-bpy)(2)(5,5'-BP2bpy)][PF(6)](2) (4) have been synthesized (where 4,4'-BP2bpy = 4,4'-bis(BMes(2)phenyl)-2,2'-bpy; 5,5'-BP2bpy = 5,5'-bis(BMes(2)phenyl)-2,2'-bpy (4,4'-BP2bpy); and t-Bu-bpy = 4,4'-bis(t-butyl)-2,2'-bipyridine). These new complexes have been fully characterized. The crystal structures of 3 and 4 were determined by single-crystal X-ray diffraction analyses. All four complexes display distinct metal-to-ligand charge transfer (MLCT) phosphorescence that has a similar quantum efficiency as that of [Ru(bpy)(3)][PF(6)](2) under air, but is at a much lower energy. The MLCT phosphorescence of these complexes has been found to be highly sensitive toward anions such as fluoride and cyanide, which switch the MLCT band to higher energy when added. The triarylboron groups in these compounds not only introduce this color switching mechanism, but also play a key role in the phosphorescence color of the complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号