首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The influence of the nature of molybdenum compounds on the catalytic activity of sulfided NiMo/γ-Al2O3 catalysts was studied. The samples were prepared by impregnating the support with mixed aqueous solutions of nickel nitrate and molybdenum-containing compounds: ammonium paramolybdate and the 6-series heteropoly compounds (HPCs) ammonium 6-molybdonickelate (NiMo6-HPC) and ammonium 6-molybdoaluminate (AlMo6-HPC). Complexing agents (tartaric acid or a solution of NH3) were used for stabilizing mixed aqueous ammonium paramolybdate and nickel nitrate solutions and for simultaneously producing an acidic or alkaline medium. The starting molybdenum compounds and catalysts in the oxide form were characterized using IR spectroscopy and x-ray diffraction analysis. The activity of catalysts based on NiMo6-HPC in the hydrogenolysis of thiophene and in the hydrotreating of the diesel fraction was higher than that of catalysts based on ammonium paramolybdate: at 320°C, the degree of sulfur removal from the diesel fraction was higher by 13–16% and the average degree of hydrogenation of polycyclic aromatic hydrocarbons was higher by 14–15%. It was also found that the use of AlMo6-HPC does not cause such an effect.  相似文献   

2.
A series of Pd/Al2O3–ZrO2 materials have been prepared via sol gel method as an attractive route to obtain more homogeneous binary oxides Al2O3–ZrO2. A Zr loading between 2 and 15 wt% was used to investigate the Zr promotion of Pd/Al2O3 materials. The prepared catalysts were calcined at two different temperatures. Very interesting results have been obtained at low zirconium content. A small amount of Zr is seen to be sufficient to stabilize the activity and to obtain good catalytic performances with developed textural properties compared to conventional catalysts used to oxidize methane. The increase of the zirconium loading is seen to decrease the catalytic activity may be due to the development of tetragonal zirconia phase detected by XRD. Similar effect has been observed after heating catalysts at high temperatures. A loss in BET surface area and in metal dispersion has been also observed for zirconium rich catalysts. A contradictory effect on textural and structural properties is seen after their calcination at 700 °C.  相似文献   

3.
Cu–Ni/γ-Al2O3 bimetallic catalysts were developed for anaerobic dehydrogenation of non-activated primary aliphatic alcohols to aldehydes. Systematic investigation about the promotion effect of nickel on the catalytic performance was carried out. Hydrogenation of C=C bond rather than C=O bond, was significantly improved over Cu–Ni/γ-Al2O3 catalyst by introducing nickel, which interprets the good conversion of primary aliphatic alcohols. This work would contribute to design new catalysts for dehydrogenation of primary aliphatic alcohols.  相似文献   

4.
A series of MoO3/γ-Al2O3 catalysts with different Mo surface densities (Mo atoms/nm2) has been prepared by incipient wetness impregnation method. Structural characteristics of the prepared catalysts were investigated by atomic absorption spectroscopy, X-ray diffraction, Fourier Transform Infrared spectroscopy, N2 adsorption at −196 °C, and temperature-programmed reduction (TPR). The catalytic activities of the prepared catalysts were tested by cyclohexene conversion between 200 and 400 °C. XRD results indicated that molybdenum oxide species were dispersed as a monolayer on the support up to 4.04 Mo atoms/nm2, and the formation of crystalline MoO3 was observed above this loading. FTIR and TPR results showed that molybdenum oxide species were present predominantly in tetrahedral form at lower loading, and polymeric octahedral forms were dominant at higher loading. Cyclohexene conversion reaction proceeded mainly through the simple dehydrogenation pathway in the studied temperature range 200–400 °C and was found to be highly dependent on MoO3 dispersion.  相似文献   

5.
Chromia/alumina (Cr2O3/γ-Al2O3) catalysts with addition of chelating agents (citric acid or oxalic acid) were prepared by the incipient impregnation method. The resulting catalysts with different citric acid (CA) or oxalic acid (OA) contents were applied to the dehydrogenation of isobutane to isobutene. The influence of chelating agents on the catalysts was investigated by means of BET, SEM, H2-TPR, NH3-TPD, and TG-DTG. The results showed that the Cr2O3/γ-Al2O3 catalysts with addition of CA or OA exerted slightly increase on specific surface area. The addition of the chelating agents as expected, determined a general decrease in the surface acidity. The catalysts with CA or OA have a better anti-coking ability by inhibiting the side reaction of cracking and carbon formation. The addition of CA or OA for preparing these catalysts resulted in a beneficial effect on the reducibility of the Cr species to diminish the reduction temperature. The appropriate content of chelating agents could improve dispersion of metal species in the γ-Al2O3 support. The catalytic activity showed an important enhancement when the metal species was impregnated in the presence of CA or OA.  相似文献   

6.
The state of the active constituents of the freshly prepared PdCl2-CuCl2/γ-Al2O3 catalyst for the low-temperature oxidation of the carbon monoxide by molecular oxygen was studied by X-ray absorption spectroscopy (XAS), powder X-ray diffraction (XRD), scanning electron microscopy (SEM), and diffuse reflectance IR Fourier transform spectroscopy (DRIFTS). It was shown that copper in the form of a crystalline phase of Cu2Cl(OH)3 with the structure of the mineral paratacamite and palladium chloride in an amorphous state occurred on the surface of γ-Al2O3. According to XAS data, the local environment of palladium consisted of four chlorine atoms, which formed a flat square with an increased distance between palladium and one of the chlorine atoms. The evolution of the local environments of copper and palladium upon a transition from the initial salts to the impregnating solutions and chlorides on the surface of γ-Al2O3 was considered. The role of γ-Al2O3 in the formation of the Cu2Cl(OH)3 phase was discussed. It was found by the DRIFTS method that linear (2114 cm−1) and bridging (1990 and 1928 cm−1) forms of coordinated carbon monoxide were formed upon the adsorption of CO on the catalyst surface. The formation of CO2 upon the interaction of coordinated CO with atmospheric oxygen was detected. Active sites including copper and palladium were absent from the surface of the freshly prepared catalyst.  相似文献   

7.
The structure of Ga2O3–Al2O3 supports and Pd/Ga2O3–Al2O3 catalysts and the performance of these catalysts in liquid-phase acetylene hydrogenation have been investigated. The deposition of Ga(NO3)3 onto Al2O3 by impregnation followed by calcination of the impregnated support at 600°C yields γ-Ga2O3–Al2O3 solid solutions containing up to 50 wt % Ga2O3. X-ray diffraction characterization of model palladium catalysts and their temperature-programmed reduction with hydrogen have demonstrated that, while palladium in Pd/Ga2O3 is in the form of a Pd2Ga alloy, in the Pd/γ-Ga2O3–Al2O3 catalyst there is no direct interaction between PdО and Ga2O3 particles and palladium is in the monometallic state. The introduction of 10–20 wt % gallium oxide into Al2O3 lowers the activity of the supported palladium catalyst relative to that of the initial Pd/Al2O3 but increases the ethylene yield by enhancing the ethylene formation selectivity.  相似文献   

8.
A series of Ni–La/γ-Al2O3 catalysts were prepared by adopting the methods of isometric impregnation and microwave impregnation. The catalysts were characterized with XRD, BET, and SEM, respectively. Inspecting the effects of adding La and the methods of impregnation on the hydrogenation activity of catalysts. The results show that adding a moderate amount of La promotes the dispersing of Ni on the carrier, the methods of microwave impregnation weaks the interaction between Ni and the carrier further, inhibits the formation of NiAl2O4, and the activity of catalyst prepared by the methods of microwave impregnation was significantly higher than that prepared by the methods of isometric impregnation. The hydrogenation activity of the Ni–La/γ-Al2O3 (WB) dipped with n(Ni): n(La) = 4: 1, microwave irradiation time 30 min with power 600W as well as calcined at 400°C exhibited the best performance. The conversion rate is 91.21% with reaction conditions: T = 160°C, p = 0.8 MPa, air speed 5 h–1, n(H2): n(benzene) = 2: 1.  相似文献   

9.
The structure of the Pd–Zn/α-Al2O3 catalyst, which was prepared by a joint impregnation method, was studied. According to XRD analysis data, supported intermetallic Pd–Zn particles were formed in a temperature range of 200–600°C. At 600°C, the crystal lattice of substitutional solid solution based on Pd (FCC) was finally rearranged into the tetragonal lattice of Pd–Zn. A shift of the Pd3d 5/2 line in the XPS spectrum indicated the formation of the Pd–Zn intermetallic compound.  相似文献   

10.
The effects of the Pd content (0–1 wt %) and the synthesis method (joint impregnation with Ni + Pd and Pd/Ni or Ni/Pd sequential impregnation) on the physicochemical and catalytic properties of Ni–Pd/CeZrO2/Al2O3 were studied in order to develop an efficient catalyst for the conversion of methane into hydrogen-containing gas. It was shown that variation in the palladium content and a change in the method used for the introduction of an active constituent into the support matrix make it possible to regulate the redox properties of nickel cations but do not affect the size of NiO particles (14.0 ± 0.5 nm) and the phase composition of the catalyst ((γ + δ)-Al2O3, CeZrO2 solid solution, and NiO). It was established that the activity of Ni–Pd catalysts in the reaction of autothermal methane reforming depends on the method of synthesis and increases in the following order: Ni + Pd < Ni/Pd < Pd/Ni. It was found that, as the Pd content of the Ni–Pd/CeZrO2/Al2O3 catalyst was decreased from 1 to 0.05 wt %, the ability for self-activation, high activity, and operational stability of the catalyst under the conditions of autothermal methane reforming remained unaffected: at 850°C, the yield of hydrogen was ~70% at a methane conversion of ~100% during a 24-h reaction.  相似文献   

11.
A systematic study of the kinetics of the low-temperature oxidation of carbon monoxide with oxygen on a PdCl2–CuCl2/γ-Al2O3 supported catalyst was carried out over a wide range of the partial pressures of oxygen, water, and CO in order to test hypotheses on the reaction mechanism. It was shown that, as the temperature was increased from 20 to 38°C, rate of formation of CO2 decreased and the apparent activation energy was about–40 kJ/mol. The hypotheses of different degrees of complexity concerning the reaction mechanism were formulated based on physicochemical data and a Langmuir–Hinshelwood model. Mechanisms in which carbon dioxide is formed on the interaction of the surface Pd(I) and Pd(II) complexes that include carbon monoxide and water with the surface complex of Cu(I) that coordinates oxygen were recognized as the most probable.  相似文献   

12.
Bimetallic membrane catalysts based on the Mo2C–WC binary carbides were obtained. Their structural characteristics and catalytic properties in a reaction of dry reforming of methane were compared with those of monocarbide catalysts. The advantage of the use of the mixed carbide catalysts was established.  相似文献   

13.
The reactions of methanol on the (10% Cu)/γ-Al2O3 surface were studied by the spectrokinetic method (simultaneous measurements of the conversion rates of surface compounds and the product formation rates). Bridging and linear methoxy groups result from the interaction of methanol with surface hydroxyl groups. Formate and aldehyde-like complexes form by the oxidative conversion of the linear methoxy groups. Hydrogen forms via the recombination of hydrogen atoms on copper clusters, and the hydrogen atoms result from interconversions of surface compounds. The source of CO2 in the gas phase is the formate complex, and the source of CO is the aldehyde complex. In the absence of methanol in the gas phase, dimethyl ether forms by the interaction between two bridging methoxy groups. When present in the gas phase, methanol reacts with methoxy groups on the surface. The roles of oxygen and water vapor in the conversions of surface compounds are discussed.  相似文献   

14.
The physicochemical properties of V2O5/Al2O3 and MgO–V2O5/Al2O3 supported catalysts (Mg : V = 1 : 1, 2 : 1, and 3 : 2) obtained by consecutive impregnation of the support with solutions of vanadium and magnesium precursors are studied using a complex of mutually complementary methods (XRD, Raman spectroscopy, UV–Vis spectrometry, and TPR-H2). The effect of the formation of surface magnesium vanadates of various composition and structure on the catalytic properties of the supported vanadium oxide catalysts in the oxidative dehydrogenation of propane is studied. The introduction of magnesium in the samples and an increase in its content, accompanied by a change in the structure of the surface vanadium oxide phases from polymeric VO6/VO5 species to surface metavanadate species, magnesium metavanadate, and further to magnesium divanadate, significantly affects their catalytic properties in the reaction of the oxidative dehydrogenation of propane to propylene.  相似文献   

15.
As one of the most recently developed membrane separation processes, nanofiltration (NF) has found a number of industrial applications. Ceramic NF membranes are also regarded as the appropriate choice in many applications, due to their higher chemical and physical stability. In this study, the rejection of the chloride ion is investigated using bi-layered γ-Al2O3-TiO2 NF membranes based on α-alumina supports. Compression is used in preparation of the supports and sol-gel dip-coating for the top-layer formation. SEM micrographs, XRD, and nitrogen adsorption/desorption isotherms are used for membrane characterisation. The results show that the calcination temperature (600°C) results in different crystal structures including the brookite phase of TiO2, the γ phase of Al2O3, and a combined phase of aluminium-titanium oxides. The average pore size of the membrane was identified as 1.6 nm using an adsorption/desorption isotherm. The rejection was also studied for the chloride ion, using a cross-flow filtration module. Filtration tests were carried out under different pressures, pH values, and salt concentrations; these showed a smoother behaviour particularly around the isoelectric points (IEPs) due to the dual-layer structure, with the best rejection at pH of approximately 5.  相似文献   

16.
The selective hydrogenation of acetylene on Pd–Fe/Al2O3 catalysts prepared by decomposition of ferrocene on reduced Pd/Al2O3 was studied. The effect of the conditions of treatment of the Pd–ferrocene/ Al2O3 precursor on the catalyst activity and selectivity was investigated, and the optimum conditions were determined at which the Pd–Fe/Al2O3 catalyst has higher selectivity than Pd/Al2O3 without any loss of activity.  相似文献   

17.
The structure and catalytic characteristics of a series of Pd–Cu/α-Al2O3 catalysts with Pd: Cu ratio varied from Pd1–Cu0.5 to Pd1–Cu4 were studied. The use of α-Al2O3 with a small surface area (Ssp = 8 m2/g) as a support made it possible to minimize the effect of diffusion on the catalytic characteristics and to study the structure of Pd–Cu nanoparticles by X-ray diffraction (XRD) analysis. The XRD analysis and transmission electron microscopy (TEM) data indicated the formation of uniform bimetallic Pd–Cu nanoparticles (d = 20–60 nm), whose composition corresponded to a ratio between the metals in the catalyst, and also the absence of monometallic Pd0 and Cu0 nanoparticles. The study of catalytic properties in the liquid-phase hydrogenation of diphenylacetylene (DPA) showed that the activity of the catalysts rapidly decreased with the Cu content increase; however, in this case, the yield of a desired alkene compound significantly increased. The selectivity of alkene formation on the catalysts with the ratios Pd: Cu = 1: 3 and 1: 4 was superior to the commercial Lindlar catalyst.  相似文献   

18.
The sequence of phases appearance during the formation of Bi1–xNdxFeO3 solid solutions in powder oxides mixtures of bismuth, neodymium, and iron has been determined. It has been shown that the closeness of the reaction mixture composition to that of the individual compound (BiFeO3 or NdFeO3) is essential for the realization of the series of phase transformations yielding solid solutions of multiferroics Bi1–xNdxFeO3 as the final product, due to the prevalence of various interphase contacts in the starting reaction zone.  相似文献   

19.
A new method for producing a nanosized γ-Al2O3 powder was proposed, by which a saturated solution of aluminum oxychloride and sucrose was subjected to sequential heat treatment to 350°C to form a transient species and then to 800°C to form a nanosized γ-Al2O3 powder. The optimal treatment parameters were determined. Stages of the process were identified. The transient species and the nanosized γ-Al2O3 powder were studied.  相似文献   

20.
Supported nickel–molybdenum and nickel–tungsten hydrocracking catalysts prepared using a support that consists of 70% Al2O3 and 30% amorphous aluminosilicate were characterized by nitrogen and mercury porosimetry, IR spectroscopy of adsorbed CO, and high-resolution electron microscopy. The catalytic tests in hydrocracking of vacuum gas oil containing 3.39% sulfur showed that the nature of the hydrogenating component (NiMo or NiW) only slightly influences the vacuum gas oil conversion and the diesel fraction yield, but noticeable influences the properties of the diesel fraction obtained. The catalyst NiMo/Al2O3–amorphous aluminosilicates, compared to NiW/Al2O3–amorphous aluminosilicates, ensures lower sulfur content in the diesel fraction obtained, whereas the catalyst NiW/Al2O3–amorphous aluminosilicates allows obtaining a diesel fraction with lower content of polyaromatic compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号