首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A highly regioselective method for the synthesis of β-iodohydrins and β-bromohydrins through direct ring opening of epoxides with elemental halogen in the presence of alumina-supported Schiff base complexes of Mn(II), Co(II), Ni(II) and Cu(II) as new catalysts is described. This method is regioselective under mild conditions in various aprotic solvents with high yields, even when sensitive functional groups are present. The catalysts are easily recovered and can be reused several times.  相似文献   

2.
Dinuclear copper(II) complexes (Cu2 LnCl3), nickel(II) complexes (Ni2 LnCl3) and cobalt(II) complexes (Co2L 2 n Cl2) from Schiff base ligands are synthesised, characterised and used as catalysts for oxidation of 3,5-DTBC to 3,5-DTBQ. (Cu2LnCl3) are found to be more efficient than the other complexes. Dinuclear iron(III) complexes of composition (Fe2L2Cl2) and ruthenium (III) complexes of composition Ru2L 2 n Cl6(PPh3)2 and Ru2L 2 n Cl2(PPh3)2 catalyse epoxidation of styrene and cyclohexene. Catalytic activities of ruthenium(III) complexes are much greater than those of analogous iron(III) complexes.  相似文献   

3.
The reactions of [RuHCl(CO)(B)(EPh3)2] (B = EPh3 or Py; E = P or As) and Schiff bases in 1:1 molar ratio led to the formation of [RuCl(CO)(EPh3)(B)(L)] (E = P or As; B = PPh3, AsPh3 or Py; L = Schiff base ligand). The new complexes have been characterized by analytical and spectroscopic (IR, electronic and 1H NMR) data. They have been assigned an octahedral structure. The new complexes were found to catalyse the transfer hydrogenation of ketones.  相似文献   

4.
5.
The asymmetric C-alkylation of benzophenone Schiff base glycine esters has been achieved using a palladium(II) chiral complex as a phase-transfer catalyst. The aromatic moiety around the metal center and various physicochemical parameters were investigated to study their effect on the asymmetric alkylation reaction under phase-transfer conditions. Moderate enantioselectivity(30–40%) was achieved under room temperature conditions, which is a significant improvement compared to no enantioselectivity with a chiral palladium-salen complex reported earlier. Computer simulation studies indicate that coordination of the metal center with Z-enolate forming a square planar complex provides a favorable steric environment where the α-carbon atom of the enolate is available for enantioselective alkylation.  相似文献   

6.
A concise overview is given on mononuclear and dinuclear, bidentate Schiff base ruthenium complexes with different additional ligands and on their applications in various chemical transformations such as Kharasch addition, enol-ester synthesis, alkyne dimerization, olefin metathesis and atom transfer radical polymerization. These new ruthenium complexes, conveniently prepared from commonly available ruthenium compounds, are very stable, exhibit a good tolerance towards organic functionalities, air and moisture and display high activity and chemoselectivity in chemical transformations. Relevant features of coordination chemistry connected with the reaction mechanism and chemoselectivity are also fully described. Since the nature of Schiff bases can be changed in a variety of ways, appealing routes for designing and preparing novel ruthenium complexes can be foreseen in the future.  相似文献   

7.
This study demonstrates the first zeolite-catalyzed synthesis of piperidine derivatives, including peptidomimetics and indoloquinolizidine alkaloids. The approach developed utilizes a highly effective one-pot reaction cascade, through imine formation and imino-Diels-Alder reactions, promoted by scandium-loaded zeolites as a heterogeneous catalyst. The methodology described benefits from very low catalyst loadings (≤5?mol?% of Sc(III) ), commercially and readily available starting materials, and mild reaction conditions. Furthermore, the Sc(III) -zeolite catalyst can be readily reused more than 10 times without any loss in efficiency.  相似文献   

8.
Creation of a stable and well-defined active center on a solid surface is a promising protocol for designing more efficient hybrid-catalysts that bridge the gap between homogeneous and heterogeneous catalysis. Treatment of a hydroxyapatite-bound Ru complex (RuHAP) with an aqueous solution of AgX (X = SbF6-, TfO-) afforded a new type of cationic Ru phosphate complex, having potentially vacant coordination sites. These cationic RuHAPs exhibited Lewis acidity toward carbonyl and cyano groups, promoting Diels-Alder and Aldol reactions with high efficiencies. Moreover, no Ru leaching was detected in the above organic reactions, and then the catalysts were recyclable.  相似文献   

9.
Ironing out the kinks: Efficient new catalytic systems based on iron thiolates are described for the iron-catalyzed cross-coupling of alkyl Grignard reagents with alkenyl halides. The reaction is highly chemo- and stereoselective. With this new procedure, the use of N-methylpyrrolidone as a co-solvent is no longer required.  相似文献   

10.
Oxidation catalysis is used to increase the performance of hydrogen peroxide in laundry bleach applications. Bleach catalysts provide cost‐effective, energy‐saving and environmentally friendly bleach systems yielding perfect stain removal at lower temperatures. This comparative study is based on the synthesis of bis[bis(salicylhydrazonephenoxy)manganese(III)] phthalocyaninatozinc(II) ( 2 ), bis[bis(salicylhydrazonephenoxy)cobalt(III)] phthalocyaninatozinc(II) ( 3 ) and bis[bis(salicylhydrazonephenoxy)iron(III)] phthalocyaninatozinc(II) ( 4 ) as tri‐nuclear complexes consisting of two Schiff base complexes substituting a zinc phthalocyanine. Complexion on the periphery to obtain complexes 2 , 3 , 4 was performed through the reaction of a Schiff base‐substituted phthalocyanine using MnCl2?4H2O, CoCl2?6H2O or FeCl3?6H2O salts in basic condition in dimethylformamide. Fourier transform infrared, 1H NMR, 13C NMR, UV–visible, inductively coupled plasma optical emission and mass spectra were applied to characterize the prepared compounds. The bleach performances of the three phthalocyanine compounds 2 , 3 , 4 were examined by the degradation of morin as hydrophilic dye. The degradation progress in the presence of catalysts 2 , 3 , 4 /H2O2 combination in aqueous solution was investigated using an online spectrophotometric method. It was found that the catalysts 2 , 3 , 4 exhibited better bleaching performance at 25 °C than tetraactylethylethylenediamine as bleach activator used in powder detergent formulations for stain removal. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
Zeolite Y-encapsulated ruthenium(III) complexes of Schiff bases derived from 3-hydroxyquinoxaline-2-carboxaldehyde and 1,2-phenylenediamine, 2-aminophenol, or 2-aminobenzimidazole (RuYqpd, RuYqap and RuYqab, respectively) and the Schiff bases derived from salicylaldehyde and 1,2-phenylenediamine, 2-aminophenol, or 2-aminobenzimidazole (RuYsalpd, RuYsalap and RuYsalab, respectively) have been prepared and characterized. These complexes, except RuYqpd, catalyze catechol oxidation by H2O2 selectively to 1,2,4-trihydroxybenzene. RuYqpd is inactive. A comparative study of the initial rates and percentage conversion of the reaction was done in all cases. Turn over frequency of the catalysts was also calculated. The catalytic activity of the complexes is in the order RuYqap > RuYqab for quinoxaline-based complexes and RuYsalap > RuYsalpd > RuYsalab for salicylidene-based complexes. The reaction is believed to proceed through the formation of a Ru(V) species.  相似文献   

12.
Two new Schiff base ligands with chromone moiety and their transition metal complexes were synthesized and characterized by elemental analyses, magnetic susceptibility, molar conductance and TGA analyses, FT IR, UV-Vis, NMR and mass spectroscopy. All the complexes synthesized have been investigated as functional models for catechol oxidase (catecholase) activity by employing 3,5-di-tert-butylcatechol as a model substrate. The two mononuclear copper(II) and two mononuclear iron(II) complexes show catecholase activity with turnover (kcat) numbers lying in the range 27.2–1328.4 h?1. According to the kinetic measurement results, the rate of catechol oxidation follows first order kinetics and iron(II) complexes were found to have higher catalytic activity than those of copper(II) complexes. Electron-donating substituent on Schiff base ligand enhanced the catalytic activity of metal complexes while the electron-withdrawing substituent led to a decrease in activity. The electrochemical properties of two Schiff bases and their metal complexes were also investigated by Cyclic Voltammetry (CV) using glassy carbon electrode (GCE) at various scan rates. Electrochemical processes of all the compounds were observed as irreversible.  相似文献   

13.
The symmetrisation reaction between cis-[PtMe2 (PMe2Ph)2] and cis-[PtCl2-(PMe2Ph)2] to give cis-[PtClMe(PMe2Ph)2] is catalysed by [Pt2Cl2 (μ-Cl)2-(PMe2Ph)2].  相似文献   

14.
Four manganese(III)-Schiff base complexes (1-4) of formula [MnL(n)(H(2)O)(2)](2)(ClO(4))(2)·mH(2)O (n = 1-4; m = 0, 1) have been prepared. The multidentate H(2)L(n) Schiff base ligands consist of 3R,5R-substituted N,N'-bis(salicylidene)-1,2-diimino-2,2-dimethylethane, where R = OEt, OMe, Br or Cl. The complexes have been thoroughly characterized by elemental analysis, mass spectrometry, magnetic susceptibility measurements, IR, UV, paramagnetic (1)H NMR and EPR spectroscopies. Other properties, including redox studies and molar conductivity measurements, have also been assessed. The crystal structure of 1 was solved by X-ray diffraction, which revealed the dimeric nature of the compound through μ-aqua bridges. The ability of these complexes to split water has been studied by water photolysis experiments, with the oxygen evolution measured in aqueous media in the presence of a hydrogen acceptor (p-benzoquinone), the reduction of which was followed by UV-spectroscopy. The discussion of the photolytic behaviour includes advances in the knowledge of the structural motifs and the chemical activity of this type of complex, as revealed by the development of several characterization techniques in the last decade. Parallel-mode Mn(III) EPR shows that complexes 1-4 not only mimic reactivity but also share some structural characteristics from partially assembled natural OEC clusters.  相似文献   

15.
The development of cheap, effective and heterogeneous catalysts remains a substantial challenge in organic synthesis. Of the extensive heterogeneous catalysis, biochar materials have attracted increasing attention to be considered as an important class of support materials in organic reactions due to their distinctive characteristics such as high porosity, large specific surface area, high adsorption ability, excellent cation exchange capacity and outstanding stability. This review highlights recent advances over the past 5 years, outlining the synthetic methods of biochar materials and their applications as catalysts or catalyst supports in a range of organic reactions including oxidation, reduction, esterification, coupling, alkylation and multi-component reactions.  相似文献   

16.
Seven new ruthenium(III) complexes of the general formula [RuCl(PPh3)LL′] · xH2O (LL′ = [ONNO] = symmetrical and unsymmetrical Schiff base derivatives of trans-1,2-diaminocyclohexane and 2-hydroxynaphthaldehyde as well as R-salicylaldehydes, x = 0–3) have been synthesized. The complexes were characterized by physico-chemical and spectroscopic techniques. The catalytic activities of the complexes in the isomerization reaction of selected O-allyl systems, i.e., 1,4-diallyloxybutane and 4-allyloxybutan-1-ol have been studied. Some of the complexes showed high efficiency and E-stereoselectivity in double bond migration of allyl group to 1-propenyl group and high selectivity of isomerization of allyloxyalcohol to cyclic acetal.  相似文献   

17.
18.
A stereospecific and high-yielding cross-coupling reaction between alkenylboron reagents and alkyl halides is described. The reaction has been achieved by using well-defined iron-bisphosphine complexes such as 1b FeCl(2)(3,5-t-Bu(2)-SciOPP), which was recently developed by the authors' group. Various nonactivated alkyl bromides and chlorides possessing a base/nucleophile-sensitive functional group can participate in the cross-coupling, demonstrating its utility for stereoselective synthesis of functional molecules bearing a carbon-carbon double bond.  相似文献   

19.
The catalytic epoxidation of styrene using urea-hydrogen peroxide and heterotrinuclear Cu(II) complexes with general formula (ML n )2Cu(acac)2, where n = 1–3 and M = VO2+ or Mn2+ is reported. Schiff base complexes ML n involving a 3,4-diaminopyridine bridge with free coordination site were used as the ligand, where (Ln)2− is [(5-x-Sal)2Py]2 and x = H, Br or NO2. The complexes were characterized by physico-chemical and spectroscopic methods. The electrochemical properties of M were modified upon trinuclear complex formation. The trinuclear complexes show high catalytic activity, with up to 86% conversion and 93% selectivity, while no catalytic properties were observed for the monomeric complexes. The catalyst could be reused with some loss of activity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号