首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We thermodynamically characterize the interaction of chitosan with small liposomes and the binding and organization of the polysaccharide on the membrane of the vesicles. By means of isothermal titration calorimetry (ITC), we obtain the enthalpy variations arising from binding of the positively ionized chitosan to neutral and negatively charged liposomes. The strong electrostatic interaction of the polysaccharide with the negative charges at the membrane gives rise to highly exothermic signal until charge compensation is reached. The equilibrium constant, the interaction stoichiometry, and the molar enthalpy of binding chitosan monomers to phospholipids from the external leaflet of the vesicle membrane are obtained from the isotherm curve fitting assuming independent binding sites. The strong exothermic signal indicates that the electrostatically driven binding of chitosan to the membrane is energetically favored, leading to further stabilization of the vesicle suspension. The higher the net negative charge of the vesicles, the more pronounced the adsorption of chitosan is, leading to weaker chain organization of the adsorbed chitosan at the membrane. At the point of charge saturation, vesicle aggregation takes place and we show that this behavior does not always lead to charge reversal at the membrane. Models for the binding behavior and structural organization of chitosan are proposed based on the experimental results from ITC, ζ-potential, and dynamic light scattering.  相似文献   

2.
Journal of Thermal Analysis and Calorimetry - A simple method for determination of binding isotherm in the protein-ligand interaction was introduced using isothermal titration calorimetric data....  相似文献   

3.
4.
The interaction of the antimicrobial peptide dicynthaurin (ala) monomer with model membranes of zwitterionic and negatively charged lipids and mixtures thereof was studied by means of isothermal titration calorimetry (ITC), fluorescent leakage, and dynamic light scattering (DLS) measurements. For the ITC analysis, we have applied the surface partitioning equilibrium model which shows that the interaction is predominately driven by hydrophobic effects (Kb between 2 x 10(4) and 1 x 10(5) M(-1)). Under low salt conditions, the enhanced electrostatic interaction leads to larger peptide concentrations immediately above the vesicle surface, which initiates the insertion of the peptide into the bilayer more effectively. Fluorescent leakage measurements have shown a fast leakage of the fluorescent dye within seconds after peptide addition. The analysis of the leakage kinetics was performed in terms of an initial pore formation model (up to t = 1000 s) that takes the reversible surface aggregation of bound peptide monomers into account. From this analysis, a minimum aggregation number of n = 7 +/- 2 per pore is obtained.  相似文献   

5.
The demicellization of the cationic detergents dodecyltrimethylammonium bromide, tetradecyltrimetylammonium bromide, and cetyltrimethylammonium bromide was studied at temperatures between 20 and 60 degrees C in 0.1 M NaCl (pH 6.4) using isothermal titration calorimetry (ITC). We determined the critical micellization concentration (cmc) of the cationic detergents which show a minimum at temperatures between 20 and 34 degrees C. In accordance with the lengthening of the hydrophobic tail of the detergents the cmc decreases with increasing alkyl chain length. The thermodynamic parameters describing the changes of enthalpy (DeltaH(demic)), the changes of entropy (DeltaS(demic)) and the Gibbs free energy change (DeltaG(demic)) for demicellization were first obtained using the pseudophase-separation model. The aggregation number n at the cmc as well as the demicellization enthalpy, entropy and Gibbs free energy change were also calculated using a simulation based on the mass-action model. Furthermore, we investigated the demicellization of CTAB in deionized water in comparison to demicellization in sodium chloride solution to determine the influence of counter ion binding on the demicellization.  相似文献   

6.
The interaction of cutinase from Humicula insolens (HiC) and sodium dodecyl sulfate (SDS) has been investigated by small-angle neutron scattering (SANS) and isothermal titration calorimetry (ITC). The concerted interpretation of structural and thermodynamic information for identical systems proved valuable in attempts to elucidate the complex modes of protein-detergent interaction. Particularly so at the experimental temperature 22 degrees C, where the formation of SDS micelles is athermal (deltaH = 0), and the effects of protein-detergent interactions stand out clearly in the thermograms. It was found that the effect of SDS on cutinase depended strongly on the sample composition. Thus, addition of SDS corresponding to a molar ratio, n(s) = n(SDS)/n(HiC) of about 10, was associated with the formation of HiC/SDS aggregates, which include more than one protein molecule. The SANS results suggested that on the average such adducts contained two HiC, and the ITC traces showed that they form and break down slowly. At slightly higher SDS concentrations (n(s) = 10-25) these "dimers" dissociated, and the protein denatured. The denaturation showed the characteristic positive enthalpy change, but the SDS denatured state of HiC was unusually compact with a radius of gyration close to that of the native conformation. Further titration with SDS was associated with exothermic binding to the denatured protein until the saturation point at about n(s) = 90. At this point, the free monomer concentration was 2.2 mM and the binding number was approximately 40 SDS/HiC. Interestingly, this degree of SDS binding (approximately 0.5 g of SDS/g of HiC) is less than half the amount bound to typical water-soluble proteins.  相似文献   

7.
Journal of Thermal Analysis and Calorimetry - This paper describes the self-association of tetrameric acids (TA) and their interactions with asphaltenes using isothermal titration calorimetry. In...  相似文献   

8.
Complex formation of large cyclodextrins(CDs) having DP 21–32 with iodine in aqueous KI solution was studied by isothermal titration calorimetry. The curves obtained for the titration of the CDs with iodine cannot be analyzed by a model based on a single set of identical sites, but, rather, by a model assuming 1 : 2 complex formation with identical interacting sites. For the two identical interacting sites, the binding constants K1 and K2 (K1 < K2), defined relative to the progress of saturation, lie in the range 0.7 to 7.3×103 M–1 and 3.0 to 62.6×103 M–1, respectively. The values of ΔH2 and T ΔS2 lie in the range –34.9 to –136.4 kJ·mol–1 and –15.5 to –112.8 kJ·mol–1, respectively. The largest values of –T ΔS2 obtained for a CD of DP 26 can, in part, be attributed to a large decrease in conformational flexibility of the CD which occurs during complex formation.  相似文献   

9.
Isothermal titration calorimetry (ITC) has been used to observe the chitinase-catalyzed hydrolysis of tetra-N-acetylchitotetraose. Enzymatic hydrolysis of tetra-N-acetylchitotetraose by chitinase B from Serratia marcescens produces exclusively two molecules of di-N-acetylchitobiose allowing for the determination of a single glycosidic bond hydrolysis heat that was used to monitor the rate of the enzymatic reaction. The change in heat rate with respect to time (dQ/dt) was translated to the reaction rate, and the total heat produced was related to substrate concentration throughout the reaction. Reaction rates versus substrates concentration were fit to Michaelis-Menten plots, yielding a kcat of 40.9 ± 0.5 s−1 and a Km of 54 ± 2 μM.  相似文献   

10.
The interaction of myelin basic protein (MBP) from the bovine central nervous system with divalent nickel ion was studied by isothermal titration calorimetry at 37 and 47 °C in Tris buffer solution at pH = 7. The new solvation model was used to reproduce the heats of MBP + Ni2+ interaction over the whole Ni2+ concentrations. It was found that MBP has three identical and independent binding sites for Ni2+ ions. The intrinsic dissociation equilibrium constant and the molar enthalpy of binding are 89.953 μM, −14.403 kJ mol−1 and 106.978 μM, −14.026 kJ mol−1 at 37 and 47 °C, respectively. The binding parameters recovered from the new solvation model were correlated to the structural changes of MBP due to its interaction with nickel ion interaction. It was found that in the low and high concentrations of the nickel ions, the MBP structure was destabilized.  相似文献   

11.
Heat of adsorption is an excellent measure for adsorption strength and, therefore, very useful to study the influence of salt and temperature in hydrophobic interaction chromatography. The adsorption of bovine serum albumin and β‐lactoglobulin to Toyopearl Butyl‐650 M was studied with isothermal titration calorimetry to follow the unfolding of proteins on hydrophobic surfaces. Isothermal titration calorimetry is established as an experimental method to track conformational changes of proteins on stationary phases. Experiments were carried out at two different salt concentrations and five different temperatures. Protein unfolding, as indicated by large changes of molar enthalpy of adsorption Δhads, was observed to be dependent on temperature and salt concentration. Δhads were significantly higher for bovine serum albumin and ranged from 578 (288 K) to 811 (308 K) kJ/mol for 1.2 mol/kg ammonium sulfate. Δhads for β‐lactoglobulin ranged from 129 kJ/mol (288 K) to 186 kJ/mol (308 K). For both proteins, Δhads increased with increasing temperature. The influence of salt concentration on Δhads was also more pronounced for bovine serum albumin than for β‐lactoglobulin. The comparison of retention analysis evaluated by the van't Hoff algorithm shows that beyond adsorption other processes occur simultaneously. Further interpretation such as unfolding upon adsorption needs other in situ techniques.  相似文献   

12.
 Microanalysis of sulfate groups at polystyrene particle surfaces, which were derived as persulfate initiator fragments, was carried out with isothermal titration calorimetry, and compared with a conventional conductometric titration. The quantitative analysis was possible even with an extremely small number of polystyrene particles have 10 μmol sulfate groups. Received: 15 December 1998 Accepted in revised form: 24 February 1999  相似文献   

13.
The interactions between triblock copolymers of poly(ethylene oxide) and poly(propylene oxide), P103 and F108, EO(n)PO(m)EO(n), m = 56 and n = 17 and 132, respectively, and gemini surfactants (oligooxa)-alkanediyl-alpha,omega-bis(dimethyldodecylammonium bromide) (12-EO(x)-12), x = 0-3, have been studied in aqueous solution using isothermal titration calorimetry. The thermograms of F108 as a function of surfactant concentration show one broad peak at polymer concentrations, Cp, < or =0.50 wt %, below the critical micelle concentration (cmc) of the copolymer at 25 degrees C. It is attributed to interactions between the surfactant and the triblock copolymer monomer. The critical aggregation concentration (cac) remains constant while deltaHmax2 and the saturation concentration, C2, increase with increasing copolymer concentration. Analysis of the cac data offers semiquantitative support that the degree of ionization of the surfactant aggregates bound to polymers is likely to be larger than that at the surfactant cmc. In P103 solutions at Cp > or = 0.05 wt %, two peaks appear in the thermograms and they are attributed to the interactions between the gemini surfactant and the micelle or monomeric forms of the copolymer. An origin-based nonlinear fitting program was employed to deconvolute the two peaks and to obtain estimates of peak properties. An estimate of the fraction of copolymer in aggregated form was also obtained. The enthalpy change due to interactions between the surfactants and P103 aggregates is very large compared to values obtained for traditional surfactants. This suggests that extensive reorganization of copolymer aggregates and surrounding solvent occurs during the interaction. Dehydration of the copolymers by the surfactant may also play an important step in the interaction. The endothermic enthalpy change reflecting interactions between the surfactant and polymer decreases more rapidly as the length and hydrophilic character of the spacer increases, suggesting that more favorable interactions occur with the P103 monomers having shorter PEO segments.  相似文献   

14.

Background  

Lectins are carbohydrate-binding proteins which potentially bind to cell surface glycoconjugates. They are found in various organisms including fungi. A lectin from the mushroom Xerocomus chrysenteron (XCL) has been isolated recently. It shows insecticidal activity and has antiproliferative properties.  相似文献   

15.
有机染料作为光散射探针在分析应用中的研究进展   总被引:30,自引:0,他引:30  
结合本实验室的研究工作,对有机染料作为光散射探针在蛋白质、核酸和金属离子测定中的应用进行了系统的评述。结合光散射原理及有机染料的共振光散射增强理论,对实验中出现的现象作出解释,并对可能作为蛋白质和核酸光散射分析的有机染料探针的结构特点进行预测。  相似文献   

16.
Four paste mixtures with varying replacement level of the cement content by fly ash have been studied. Due to fly ash, the acceleration period decreased and a third hydration peak was noticed with isothermal calorimetry. The total heat after 7 days increased with increasing fly ash content. From 1 to 7 days, thermogravimetry showed a higher chemically bound water and Ca(OH)2-content for the pastes with fly ash. Between 7 and 14 days the calcium hydroxide started to be depleted due to the pozzolanic reaction. A unique relation was found between calcium hydroxide and total heat development.  相似文献   

17.
The binding of 8-anilinonaphthalene sulfonate to concanavalin A has been investigated. Isothermal titration calorimetry (ITC) and circular dichroism studies have been performed under different experimental conditions to understand the binding quantitatively and evaluate contributions of different forces responsible for it. Isothermal titration calorimetric results of concanavalin A with ANS at pH 5.2 and 2.5, where it exists as a dimer, indicated binding heterogeneity and two classes of noninteracting sites. Enhancement of the binding constants from native to pH 2.5 suggests that the ANS binding is strongly influenced by the protein charge and the favorable alteration in the structure of concanavalin A as suggested by near-UV CD results. No binding was observed with the tetrameric form of concanavalin A, indicating shielding of sites due to dimerization of canonical dimers. The results have also demonstrated existence of a hydrophobic binding site that is distinct from the saccharide binding site.  相似文献   

18.
Acoustic wave devices have continued to gain attention as biosensor structures because of their relative ease of operation and sensitivity to interfacial biochemical events. In the present paper, we review the use of the thickness-shear mode device for the label-free detection of processes involving nucleic acid moieties that are imposed at the sensor-liquid interface. Following a concise discussion of the theory and technology connected to the operation of the sensor in liquids, we outline a number of protocols that have been adopted for the attachment of oligonucleotides to sensor surfaces, many of which have been employed in ultrasonic biosensing. The various categories of applications are then surveyed in some detail. By far, the largest group is the study of duplex formation at the sensor surface, involving a compendium of experiments involving complementary and mismatched sequences. Considerably less attention has been paid to the detection of interaction of surface-bound nucleic acids with small molecules such as specific-binding peptides and drugs.A comprehensive appraisal of the literature in this field strongly suggests that acoustic coupling phenomena are particularly sensitive to interfacial physical chemistry. Accordingly, acoustic shear wave technology offers unique advantages over other sensor configurations because of its ability to produce multidimensional information through the recording of various parameters obtained from acoustic network analysis.  相似文献   

19.
In this paper, fluorescence-enhancement of Tb-nucleic acids [fish sperm DNA (fsDNA) and yeast RNA (yRNA)] by Lu3+ is studied in detail and is applied to determine nucleic acids. The experiments indicated that under the optimum conditions, a linear relationship was obtained between the fluorescence intensity (If) and the concentration of nucleic acids. The linear range is 1.2×10−8-1.0×10−4 g/ml for DNA and 3.0×10−8-8.0×10−4 g/ml for RNA. The detection limits (signal/noise=3) for DNA and RNA were 4.8×10−9 and 7.0×10−9 g/ml, respectively. The mechanism of the co-luminescence effect is also discussed.  相似文献   

20.
Isothermal calorimetry and UV-visible spectrophotometry have been used to study the thermochemistry of the enzyme-catalyzed hydrolysis of hydrophobic L-amino acid esters in organic solvents with low water content at 298 K. The p-nitrophenyl esters of Z-L-tyrosine and Z-L-phenylalanine were used as model hydrophobic substrates. Acetonitrile was used as a model organic solvent. A special preparation protocol of the reactants in the calorimetric vessel was applied in order to determine the heat effects accompanying the enzyme-catalyzed hydrolysis reaction in organic mixtures with low water content and the Tris buffer ionization enthalpies over the whole range of water content in acetonitrile. It was found that the molar enthalpy of the hydrolysis of p-nitrophenyl esters and buffer ionization enthalpy depend significantly and similarly on the water content in acetonitrile. However, the reaction enthalpy corrected for the buffer ionization enthalpy does not depend on the water content in organic solvent mixtures. An explanation of the effect of the selected organic solvent on the thermochemical parameters was provided on the basis of the IR spectroscopic data for the hydrogen bond network of water in acetonitrile. The results obtained show that the state of water in organic solvents is an important factor that determines the reaction enthalpy as well as buffer ionization enthalpy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号