首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Converting light hydrocarbons such as methane, ethane, propane, and cyclohexane into value-added chemicals and fuel products by means of direct C−H functionalization is an attractive method in the petrochemical industry. As they emerge as a relatively new class of porous solid materials, metal–organic frameworks (MOFs) are appealing as single-site heterogeneous catalysts or catalytic supports for C−H bond activation. In contrast to the traditional microporous and mesoporous materials, MOFs feature high porosity, functional tunability, and molecular-level characterization for the study of structure–property relationships. These virtues make MOFs ideal platforms to develop catalysts for C−H activation with high catalytic activity, selectivity, and recyclability under relatively mild reaction conditions. This review highlights the research aimed at the implementation of MOFs as single-site heterogeneous catalysts for C−H bond activation. It provides insight into the rational design and synthesis of three types of stable MOF catalysts for C−H bond activation, that is, i) metal nodes as catalytic sites, ii) the incorporation of catalytic sites into organic struts, and iii) the incorporation of catalytically active guest species into pores of MOFs. Here, the rational design and synthesis of MOF catalysts that lead to the distinct catalytic property for C−H bond activation are discussed along with the post-synthesis of MOFs, intriguing functions with MOF catalysts, and microenvironments that lead to the distinct catalytic properties of MOF catalysts.  相似文献   

2.
金属-有机骨架材料及其在催化反应中的应用   总被引:2,自引:0,他引:2  
李庆远  季生福  郝志谋 《化学进展》2012,24(8):1506-1518
金属-有机骨架(metal-organic frameworks, MOFs)材料是由金属离子和有机配体通过自组装而成的具有多孔结构的特殊晶体材料。由于其种类的多样性、孔道的可调性和结构的易功能化,已在气体的吸附和分离、催化、磁学、生物医学等领域表现出了诱人的应用前景。本文介绍了MOFs材料的类型和常用的合成方法,综述了近年来MOFs材料在催化领域的应用,特别是以MOFs材料中骨架金属作为活性中心、骨架有机配体作为活性中心和负载催化活性组分的催化反应,并对MOFs材料的催化应用趋势做了展望,以期对MOFs材料的催化性能有比较全面的认识。  相似文献   

3.
Metal–organic frameworks (MOFs) are a class of crystalline porous materials that have been actively used for several industrial and synthetic applications. MOFs are spatially and geometrically extrapolated coordination polymers with intriguing properties such as tunable porosity and dimensionality. In terms of their catalytic efficiency, MOFs combine the easy recoverability of heterogeneous catalysts with the increased selectivity of biological catalysts. It is therefore not surprising that a lot of work on optimizing MOF catalysts for organic transformations has been carried out over the past decade. In this review, recent developments in MOF catalysis are summarized, with special attention being paid to C−C, C−N, and C−O coupling reactions. The influence of pore size, pore environment, and load on catalytic activity is described. Post-synthetic stabilization techniques and host–guest interactions in caged MOF scaffolds are detailed. Mechanistic aspects pertaining to the use of MOFs in asymmetric heterogeneous catalysis are highlighted and categorized.  相似文献   

4.
Metal sites play an essential role in both electrocatalytic and photocatalytic energy conversion. The highly ordered arrangements of the organic linkers and metal nodes as well as the well‐defined pore structures of metal‐organic frameworks (MOFs) make them ideal substrates to support atomically dispersed metal sites (ADMSs) located in their metal nodes, linkers, and pores. Porous carbon materials doped with ADMSs can be derived from these ADMS‐incorporating MOF precursors through controlled treatments. These ADMSs incorporated in pristine MOFs and MOF‐derived carbon materials possess unique advantages over molecular or bulk metal‐based catalysts and bridge the gap between homogeneous and heterogeneous catalysts for energy‐conversion applications. This Review presents recent progress in the design and incorporation of ADMSs in MOFs and MOF‐derived materials for energy‐conversion applications.  相似文献   

5.
Catalysis is one of the key techniques for people's modern life. It has created numerous essential chemicals such as biomedicines, agricultural chemicals and unique materials. Heterogeneous catalysis is the new emerging method with reusable catalysts. Among heterogenous catalysis patterns developed so far, single crystalline catalysis has become the promising one owing to its high catalytic density and selectivity resulted by the inherent porosity, orderliness of the lattices and permeability. These crystalline catalysts could be used in various reactions such as photo-dimerization, Diels-Alder reaction, CO2 transformation and so on. In this review, we highlighted the reported works about the single crystalline catalysts. Both discrete small molecules and metal-organic frameworks (MOFs) have been used to prepare single crystals for catalysis. For discrete molecules based crystalline catalysts, coordinated and covalent molecules have been used. There were more catalytic modes in crystalline MOF catalysts. Three patterns were identified in this review: single crystalline MOFs i) without catalytic sites, ii) with inherent catalytic features and iii) with introducing catalytic units by post synthetic modification. Based on these examples, this review committed to provide the inspirations for the further design and application of single crystalline materials.  相似文献   

6.
孟志超  张璐  黄艳凤 《色谱》2018,36(3):216-221
金属有机骨架(MOFs)材料是近几年涌现出的一类新型多功能多孔材料,以金属离子或金属簇为配位中心,与含氧或氮的有机配体通过配位作用形成多孔骨架结构。相比于其他传统无机多孔材料,MOFs具有比表面积高、孔隙率大、热稳定性好和结构与功能多样化的特点,因而被广泛用于气体存储、催化、吸附和分离等领域。MOFs复合材料在样品预处理方面的应用引起了研究者们的极大兴趣和广泛关注。由于MOFs材料和不同功能材料如高分子聚合物、碳基材料以及磁性材料组装复合,使MOFs复合材料的性能优于原来的MOFs材料。综述了近年MOFs复合材料在样品预处理的研究应用,尤其是在固相微萃取、固相萃取以及磁性固相萃取等方面的应用。  相似文献   

7.
Crystalline solid materials are platforms for the development of effective catalysts and have shown vast benefits at the frontiers between homogeneous and heterogeneous catalysts. Typically, these crystalline solid catalysts outperformed their homogeneous analogs due to their high stability, selectivity, better catalytic activity, reusability and recyclability in catalysis applications. This point of view, comprising significant features of a new class of porous crystalline materials termed as metal‐organic frameworks (MOFs) engendered the attractive pathway to synthesize functionalized heterogeneous MOF catalysts. The present review includes the recent research progress in developing both hydrogen‐bond donating (HBD) MOF catalysts and MOF‐supported single‐site catalysts (MSSCs). The first part deals with the novel designs of urea‐, thiourea‐ and squaramide‐containing MOF catalysts and study of their crucial role in HBD catalysis. In the second part, we discuss the important classification of MSSCs with existing examples and their use in desired catalytic reactions. In addition, we describe the relative catalytic efficiency of these MSSCs with their homogeneous and similarly reported analogs. The precise knowledge of discussed heterogeneous MOF catalysts in this review may open the door for new research advances in the field of MOF catalysis.  相似文献   

8.
Biodiesel is a promising candidate for sustainable and renewable energy and extensive research is being conducted worldwide to optimize its production process. The employed catalyst is an important parameter in biodiesel production. Metal–organic frameworks (MOFs), which are a set of highly porous materials comprising coordinated bonds between metals and organic ligands, have recently been proposed as catalysts. MOFs exhibit high tunability, possess high crystallinity and surface area, and their order can vary from the atomic to the microscale level. However, their catalytic sites are confined inside their porous structure, limiting their accessibility for biodiesel production. Modification of MOF structure by immobilizing enzymes or ionic liquids (ILs) could be a solution to this challenge and can lead to better performance and provide catalytic systems with higher activities. This review compiles the recent advances in catalytic transesterification for biodiesel production using enzymes or ILs. The available literature clearly indicates that MOFs are the most suitable immobilization supports, leading to higher biodiesel production without affecting the catalytic activity while increasing the catalyst stability and reusability in several cycles.  相似文献   

9.
The potential to exert atomistic control over the structure of site-isolated catalyst sites, as well as the topology and chemical environment of interstitial pore spaces, has inspired efforts to apply porous metal-organic frameworks (MOFs) as catalysts for fine chemical synthesis. In analogy to enzyme-catalyzed reactions, MOF catalysts have been proposed as platforms in which substrate confinement could be used to achieve chemo- and stereoselectivities that are orthogonal to solution-phase catalysts. In order to leverage the tunable pore topology of MOFs to impact catalyst selectivity, catalysis must proceed at interstitial catalyst sites, rather than at solvent-exposed interfacial sites. This Minireview addresses challenges inherent to interstitial MOF catalysis by 1) describing the diffusional processes available to sorbates in porous materials, 2) discussing critical factors that impact the diffusion rate of substrates in porous materials, and 3) presenting in operando experimental strategies to assess the relative rates of substrate diffusion and catalyst turnover in MOF catalysis. It is anticipated that the continued development of in operando tools to evaluate substrate diffusion in porous catalysts will advance the application of these materials in fine chemical synthesis.  相似文献   

10.
Crystalline porous materials are extremely important for developing catalytic systems with high scientific and industrial impact. Metal-organic frameworks (MOFs) show unique potential that still has to be fully exploited. This perspective summarizes the properties of MOFs with the aim to understand what are possible approaches to catalysis with these materials. We categorize three classes of MOF catalysts: (1) those with active site on the framework, (2) those with encapsulated active species, and (3) those with active sites attached through post-synthetic modification. We identify the tunable porosity, the ability to fine tune the structure of the active site and its environment, the presence of multiple active sites, and the opportunity to synthesize structures in which key-lock bonding of substrates occurs as the characteristics that distinguish MOFs from other materials. We experience a unique opportunity to imagine and design heterogeneous catalysts, which might catalyze reactions previously thought impossible.  相似文献   

11.
The development of heterogeneous asymmetric catalysts has attracted increasing interest in synthetic chemistry but mostly relies on the immobilization of homogeneous chiral catalysts. Herein, a series of chiral metal–organic frameworks (MOFs) have been fabricated by anchoring similar chiral hydroxylated molecules (catalytically inactive) with different lengths onto Zr-oxo clusters in achiral PCN-222(Cu). The resulting chiral MOFs exhibit regulated enantioselectivity up to 83 % ee in the asymmetric ring-opening of cyclohexene oxide. The chiral molecules furnished onto the catalytic Lewis sites in the MOF create multilevel microenvironment, including the hydrogen interaction between the substrate and the chiral −OH group, the steric hindrance endowed by the benzene ring on the chiral molecules, and the proximity between the catalytic sites and chiral molecules confined in the MOF pores, which play crucial roles and synergistically promote chiral catalysis. This work nicely achieves heterogeneous enantioselective catalysis by chiral microenvironment modulation around Lewis acid sites.  相似文献   

12.
The application of ammonium borane (AB) as a hydrogen storage material is limited by the sluggish kinetics of H2 release. Two catalysts based on metal–organic frameworks (MOFs) have been prepared either by applying MOF as precursors or by the in situ reduction method. In the release of H2 from AB, the high H2 content of the whole system, the remarkably lower reaction onset temperature, the significantly increased H2 release rates at ≤90 °C, and the decreased reaction exothermicity have all been achieved with only 1.0 mol % MOF‐based catalyst. Moreover, the clear catalytic diversity of three catalysts has been observed and discussed. The in situ synthesized Ni0 sites and the MOF supports in the catalysts were proven to show significant and different effects to promote the catalytic activities. With MOF‐based catalysts, both the enhanced kinetics and the high H2 capacity of the AB system present great advantages for future use.  相似文献   

13.
Although many monometallic active sites have been installed in metal–organic frameworks (MOFs) for catalytic reactions, there are no effective strategies to generate bimetallic catalysts in MOFs. Here we report the synthesis of a robust, efficient, and reusable MOF catalyst, MOF-NiH, by adaptively generating and stabilizing dinickel active sites using the bipyridine groups in MOF-253 with the formula of Al(OH)(2,2′-bipyridine-5,5′-dicarboxylate) for Z-selective semihydrogenation of alkynes and selective hydrogenation of C=C bonds in α,β-unsaturated aldehydes and ketones. Spectroscopic studies established the dinickel complex (bpy⋅)NiII(μ2-H)2NiII(bpy⋅) as the active catalyst. MOF-NiH efficiently catalyzed selective hydrogenation reactions with turnover numbers of up to 192 and could be used in five cycles of hydrogenation reactions without catalyst leaching or significant decrease of catalytic activities. The present work uncovers a synthetic strategy toward solution-inaccessible Earth-abundant bimetallic MOF catalysts for sustainable catalysis.  相似文献   

14.
Metal-organic frameworks(MOFs) are a class of porous inorganic-organic hybrid materials, which are constructed from diverse inorganic building units and multi-functional organic ligands. Highly ordered pore structures and tailored functionalization have made MOF materials potential for applications in many fields. Among various MOF materials, 3p-block metal(Al, Ga, and In)-based MOFs exhibit higher chemical stability than divalent transition metal-based MOFs due to their higher valence. In this review, Al-MOFs and In-MOFs were mainly discussed from the perspective of categories of inorganic building blocks, coordination types, and numbers of organic ligands. This review will give intuitive guidance to the design and synthesis of novel 3p-block metal-based MOFs with potential applications.  相似文献   

15.
近年来,大气中CO2的浓度不断增加,带来全球变暖等一系列严重后果,成为国际社会共同关注的环境问题.将CO2催化转化为高附加值化学品可有效降低其向大气中的排放,同时可实现其资源化利用,符合低碳社会的发展目标.目前,已有多种催化体系实现了CO2向不同化学品的转化.然而,由于CO2自身的热力学稳定性和动力学惰性,这些转化通常需要在苛刻的反应条件和较高能耗下进行.设计开发高效催化体系、实现温和条件下CO2的转化利用引起了工业界和学术界的广泛兴趣.金属有机骨架材料(MOFs)是一类由有机配体和金属中心通过配位键组装而成的有机-无机杂化材料,在很多方面展现出良好的应用性能.由于其结构的多样性、可设计性、高比表面积和多孔性等独特性质,MOFs在催化领域吸引了很多研究者的关注.其中,MOFs作为非均相催化剂在CO2热催化转化中表现出良好的应用前景,已实现多种CO2向高值化学品的转化路径.但这些催化体系也存在一些缺点,如有些MOFs材料在催化反应中稳定性差以及其微孔性对反应中的传质造成限制等.因此,设计稳定的MOFs和MOF-基材料并对其结构进行优化改性,从而在温和条件下实现高效的CO2转化具有重要意义.本文综述了提高MOFs在CO2热催化转化反应中性能的几种策略:(1)对MOFs结构中的配体进行设计,包括具有活性官能团的配体、活性配合物作为配体和引入混合配体设计多元MOF;(2)调节MOFs结构中的金属中心,设计混合金属中心和包含活性金属团簇的金属中心;(3)构筑多级孔MOFs;(4)设计MOF-基的复合材料,包括MOFs作为载体与金属纳米颗粒、活性配合物和聚合物构建复合材料;(5)利用MOFs作为前驱体制备MOF-基衍生物材料,重点阐述了如何增加MOFs作为非均相催化剂的催化活性位点以及在CO2转化反应中各位点之间的协同作用.此外,介绍了原位表征技术在MOF-基材料用于CO2固定和转化中的应用.最后,分析了MOF-基非均相催化材料在CO2热催化转化领域目前面临的问题和挑战,包括MOFs材料结构优化、催化机理研究和规模化制备等方面,并对未来的发展趋势进行了展望.  相似文献   

16.
Zinc–air batteries (ZABs) are regarded as ideal candidates for next-generation energy storage equipment due to their high energy density, non-toxicity, high safety, and environmental friendliness. However, the slow oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) kinetics on the air cathode limit their efficiency and the development of highly efficient, low cost and stable bifunctional electrocatalysts is still challenging. Metal–Organic Framework (MOF) based bifunctional oxygen electrocatalysts have been demonstrated as promising alternative catalysts due to the regular structure, tunable chemistry, high specific surface area, and simple and easy preparation of MOFs, and great progress has been made in this area. Herein, we summarize the latest research progress of MOF-based bifunctional oxygen electrocatalysts for ZABs, including pristine MOFs, derivatives of MOFs and MOF composites. The effects of the catalysts'' composites, morphologies, specific surface areas and active sites on catalytic performances are specifically addressed to reveal the underlying mechanisms for different catalytic activity of MOF based catalysts. Finally, the main challenges and prospects for developing advanced MOF-based bifunctional electrocatalysts are proposed.

The research progress of MOF-based bifunctional oxygen electrocatalysts for zinc–air batteries is reviewed and the main challenges and prospects for developing advanced MOF-based bifunctional electrocatalysts are proposed.  相似文献   

17.
In our continuing quest to develop a metal–organic framework (MOF)‐catalyzed tandem pyrrole acylation–Nazarov cyclization reaction with α,β‐unsaturated carboxylic acids for the synthesis of cyclopentenone[b]pyrroles, which are key intermediates in the synthesis of natural product (±)‐roseophilin, a series of template‐induced Zn‐based ( 1–3 ) metal‐organic frameworks (MOFs) have been solvothermally synthesized and characterized. Structural conversions from non‐porous MOF 1 to porous MOF 2 , and back to non‐porous MOF 3 arising from the different concentrations of template guest have been observed. The anion–π interactions between the template guests and ligands could affect the configuration of ligands and further tailor the frameworks of 1–3 . Futhermore, MOFs 1–3 have shown to be effective heterogeneous catalysts for the tandem acylation–Nazarov cyclization reaction. In particular, the unique structural features of 2 , including accessible catalytic sites and suitable channel size and shape, endow 2 with all of the desired features for the MOF‐catalyzed tandem acylation–Nazarov cyclization reaction, including heterogeneous catalyst, high catalytic activity, robustness, and excellent selectivity. A plausible mechanism for the catalytic reaction has been proposed and the structure–reactivity relationship has been further clarified. Making use of 2 as a heterogeneous catalyst for the reaction could greatly increase the yield of total synthesis of (±)‐roseophilin.  相似文献   

18.
A UiO-66-NCS MOF was formed by postsynthetic modification of UiO-66-NH2. The UiO-66-NCS MOFs displays a circa 20-fold increase in activity against the chemical warfare agent simulant dimethyl-4-nitrophenyl phosphate (DMNP) compared to UiO-66-NH2, making it the most active MOF materials using a validated high-throughput screening. The −NCS functional groups provide reactive handles for postsynthetic polymerization of the MOFs into functional materials. These MOFs can be tethered to amine-terminated polypropylene polymers (Jeffamines) through a facile room-temperature synthesis with no byproducts. The MOFs are then crosslinked into a MOF–polythiourea (MOF–PTU) composite material, maintaining the catalytic properties of the MOF and the flexibility of the polymer. This MOF–PTU hybrid material was spray-coated onto Nyco textile fibers, displaying excellent adhesion to the fiber surface. The spray-coated fibers were screened for the degradation of DMNP and showed durable catalytic reactivity.  相似文献   

19.
Environmentally friendly metal–organic frameworks (MOFs) have gained considerable attention for their potential use as heterogeneous catalysts. Herein, two CuI-based MOFs, namely, [Cu4Cl4L] ⋅ CH3OH ⋅ 1.5 H2O ( 1-Cl ) and [Cu4Br4L] ⋅ DMF ⋅ 0.5 H2O ( 1-Br ), were assembled with new functionalized thiacalix[4]arenes (L) and halogen anions X (X=Cl and Br) under solvothermal conditions. Remarkably, catalysts 1-Cl and 1-Br exhibit great stability in aqueous solutions over a wide pH range. Significantly, MOFs 1-Cl and 1-Br , as recycled heterogeneous catalysts, are capable of highly efficient catalysis for click reactions in water. The MOF structures, especially the exposed active CuI sites and 1D channels, play a key role in the improved catalytic activities. In particular, their catalytic activities in water are greatly superior to those in organic solvents or even in mixed solvents. This work proposes an attractive route for the design and self-assembly of environmentally friendly MOFs with high catalytic activity and reusability in water.  相似文献   

20.
The catalytic performance of metal–organic frameworks (MOFs) for the synthesis of cyclic carbonate from carbon dioxide and epoxides has been explored under solvent and solvent‐free conditions, respectively. It was found that MOF catalysts have significantly improved catalytic activities in solvent‐free CO2 cycloaddition reactions than those in solvent. The mechanism was discussed with regard to the competition of solvent with substrate to adhere MOF catalysts during the reaction process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号