首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到4条相似文献,搜索用时 0 毫秒
1.
A new triazine polymer was synthesized by using cyanuric chloride, ethanolamine and ethylenediamine as raw materials. It is used both as a charring agent and as a foaming agent in intumescent flame retardants, designated as charring-foaming agent (CFA). Effect of CFA on flame retardancy, thermal degradation and mechanical properties of intumescent flame retardant polypropylene (PP) system (IFR-PP system) has been investigated. The results demonstrated that the intumescent flame retardant (IFR) consisting of CFA, APP and Zeolite 4A is very effective in flame retardancy of PP. It was found that when the weight ratio of CFA to APP is 1:2, that is, the components of the IFR are 64 wt% APP, 32 wt% CFA and 4 wt% Zeolite 4A, the IFR presents the most effective flame retardancy in PP systems. LOI value of IFR-PP reaches 37.0, when the IFR loading is 25 wt% in PP. It was also found that when the IFR loading is only 18 wt% in PP, the flame retardancy of IFR-PP can still pass V-0 rating, and its LOI value reaches 30.2. TGA data obtained in pure nitrogen demonstrated that CFA has a good ability of char formation itself, and CFA shows a high initial temperature of the thermal degradation. The char residue of CFA can reach 35.7 wt% at 700 °C. APP could effectively promote the char formation of the APP-CFA system. The char residue reaches 39.7 wt% at 700 °C, while it is 19.5% based on calculation. The IFR can change the thermal degradation behaviour of PP, enhance Tmax of the decomposition peak of PP, and promote PP to form char, based upon the results of the calculation and the experiment. This is attributed to the fact that endothermic reactions took place in IFR charring process and the char layer formed by IFR prevented heat from transferring into inside of IFR-PP system. TGA results further explained the effective flame retardancy of the IFR containing CFA.  相似文献   

2.
A novel thermally conductive Polyamide 6 (PA6) with good fire resistance was prepared by introducing a phosphorous-nitrogen flame retardant (FR) and platelet-shaped hexagonal boron nitride (hBN) into the matrix. With high thermal conductivity and good flame retardancy, the material is suitable for applications in electronic and electrical devices. The limiting oxygen index (LOI) changes for various loadings content of FR. However this formulation still does not show an ideal fire resistance, due to the appearance of melt dripping behavior during the UL 94 test. With the extra introduction of 3 vol% and 5 vol% hBN, the melt dripping behavior during the burning process completely disappeared. The hBN also increased the thermal conductivity. Furthermore PA6 compounded with FR and hBN showed a better thermal stability than neat PA6. The morphology of the char residues was investigated by scanning electron microscopy (SEM). The flaky hBN acted as the framework in the char structure and the rigid hBN could effectively break the bubble-shaped char on the surface of the residues which resulted in the enhancement of the strength and compactness of the char.  相似文献   

3.
Brominated flame retardant polystyrene composites were prepared by melt blending polystyrene, decabromodiphenyl oxide, antimony oxide, multi-wall carbon nanotubes and montmorillonite clay. Synergy between carbon nanotubes and clay and the brominated fire retardant was studied by thermogravimetric analysis, microscale combustion calorimetry and cone calorimetry. Nanotubes are more efficient than clay in improving the flame retardancy of the materials and promoting carbonization in the polystyrene matrix. Comparison of the results from the microscale combustion calorimeter and the cone calorimeter indicate that the rate of change of the peak heat release rate reduction in the microscale combustion calorimeter was slower than that in the cone. Both heat release capacity and reduction in the peak heat release rate in the microscale combustion calorimeter are important for screening the flame retardant materials; they show good correlations with the cone parameters, peak heat release rate and total heat released.  相似文献   

4.
An HPLC-UV/MS method has been developed to identify and quantify flame retardants in post-consumer plastics from waste of electric and electronic equipment (WEEE). Atmospheric pressure chemical ionisation spectra of 15 brominated and phosphate-based flame retardants were recorded and interpreted. The method was applied to detect flame retardant additives in polymer extracts obtained from pressurised liquid extraction of solid polymers. In addition, a screening method was developed for soluble styrene polymers to isolate a flame retardant fraction through the application of gel permeation chromatography (GPC). This fraction was transferred to an online-coupled HPLC column and detected by UV spectroscopy, which allowed a reliable qualitative and quantitative analysis of brominated flame retardants in the polymer solutions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号