首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
We report on the synthesis and crystal structures of two new zinc coordination polymers with 4,4′-oxybis(benzoate) (oba) ligands. Single crystals of [Zn2(oba)2(azpy)(dmf)2] · 6DMF(azpy = 4,4′-azopyridine) and [Zn2(oba)2(bpe)] · 2DMF · 4H2O (bpe = trans-1,2-bis(4-pyridyl)ethylene) were prepared by treatment of Zn(CH3COO)2 · 2H2O with the H2oba and bis-pyridine type ligands, azpy and bpe, respectively, in DMF. Compound [Zn2(oba)2(azpy)(dmf)2] · 6DMF has a unique ladder structure comprising of heteroorganic bridges, in which the Zn–oba chains construct the side rails, while the Zn–azpy–Zn parts construct the rungs of the ladder framework. Despite the large size of the cavities, these ladder chains stack without interpenetration, and the cavities in the ladder framework are partially connected to create one-dimensional channel-like cavities. Compound [Zn2(oba)2(bpe)] · 2DMF · 4H2O exhibits a three-dimensional coordination framework that is comprised of heteroorganic bridges. The framework is interwoven by two-dimensional layers of [Zn2(oba)2] and the Zn2–bpe chains. The three-dimensional framework, which contains large cavities, about 13 × 11 Å2 in area, has a high porosity and a density of only 0.53 g cm−3.  相似文献   

2.
Three novel Zn(II) complexes,[Zn4L1Cl4]-3H2O(1),[Zn4L2Cl4]-2DMF(2) and[Zn4L3Cl4]H2O(3),have been synthesized and structurally characterized.In these complexes,interesting 32-membered dodecadentate macrocyclic ligands were generated in situ by ’2 + 2’ type condensation reactions between a tetraamine and various dialdehydes.All the complexes are isostructurally tetranuclear Zn(Ⅱ) complexes,containing endogenous alkoxo and phenoxo bridges.Applications of the macrocyclic ligands as Zn2+ sensors have been investigated.Take H4L1 for example,it exhibits a 4-fold fluorescence enhancement upon the addition of 2 equiv.of Zn2+ in MeOH.  相似文献   

3.
A fluorescent probe based PET mechanism was designed, and the probe could image endogenous release of Zn2+ upon H2O2 stimulation in SH-SY5Y cells.  相似文献   

4.
A new tetraphenylethene-based fluorescent probe 2-(quinolin-8-yliminomethyl)-4-triphenylvinyl-phenol (HL) for detecting Zn2+ ion through the excited state intramolecular proton transfer (ESIPT) and chelation enhanced fluorescence (CHEF) processes has been designed and synthesized. The results show that HL emits relatively strong blue fluorescence at 460 nm without Zn2+ ion, however, probe HL displays highly pink fluorescent emission at 600 nm when adding Zn2+ ion. The fluorescent emission of HL appears an extremely large Stokes shift, which effectively reduces the interference of background signal. The limit of detection of HL for Zn2+ ion can reach to 9.0 × 10–8 M.  相似文献   

5.
Yellow emitting β-Zn2SiO4:Mn2+ and green emitting α-Zn2SiO4:Mn2+ nanoparticles are synthesized by nucleation applying a zinc-containing ionic liquid. As-prepared material is non-agglomerated and very uniform with a mean diameter of 32 nm. According to X-ray diffraction (XRD) two crystallographic different modifications of Zn2SiO4 can be realized by annealing of as-prepared and non-crystalline nanomaterial at 750 and 1000 °C. Surprisingly, these crystalline materials are still nanosized, non-agglomerated and redispersible. Scanning electron microscopy (SEM) and dynamic light scattering (DLS) confirm particle diameters of 18 nm (β-Zn2SiO4:Mn2+) and 14 nm (α-Zn2SiO4:Mn2+). Photoluminescence indicates Mn2+-related emission at an average wavelength of 579 nm and 528 nm, and a quantum yield of 7% and 12% for β-Zn2SiO4:Mn2+ and α-Zn2SiO4:Mn2+, respectively.  相似文献   

6.
By employing different organic amines as structure-directing agents, two new distinct 3D porous inorganic frameworks based on molybdenum(V) phosphates and MnII, (H2en)2{[Mn(H2O)]2[MnMo12O24(OH)6(H2PO4)2(HPO4)4(PO4)2]}·7H2O (en = ethylenediamine) (1) and (H3dien)2{[Mn(H3O)2][Mn3Mo12O24(OH)6(HPO4)2(PO4)6]}·5H2O (dien = diethylenetriamine) (2), have been hydrothermally synthesized, and characterized by routine physical methods. In compound 1, MnII all adopt octahedral coordination mode and each sandwich cluster Mn[Mo6P4O31]2 (abbreviated as Mn[Mo6P4]2) acts as an octa-dentate ligand linking eight MnII, which result in a 3D inorganic (4, 8)-connected framework with the (46)(410·612·86) topology. Compound 2 shows a 3D (4, 10)-connected framework with the (31·44·61)(34·49·57·617·74·84) topology, in which MnII ions exhibit both tetrahedral and octahedral coordination modes, and each Mn[Mo6P4]2 links ten MnII. Interestingly, there exist channels along the a and b axes in 1, while along the a and c axes in 2. The differences between the two compounds should be ascribed to the distinctions of the organic amines. Primary de-/rehydration behaviors and electrochemistry properties have also been studied for the two compounds.  相似文献   

7.
《Solid State Sciences》2007,9(3-4):279-286
The layered double hydroxides (LDH) of Zn with Al containing intercalated CO32− and NO3 ions undergo solution decomposition to yield a highly crystalline oxide mixture comprising ZnO and ZnAl2O4 at temperatures as low as 150–180 °C under hydrothermal conditions. In contrast solid-state decomposition takes place at a much higher temperature (240–315 °C) in air. Solution decomposition is not only guided by the low octahedral crystal field stabilization energy of Zn2+ ions, a factor that also affects solid-state decomposition, but also by solubility considerations. The LDHs of Mg and Ni with Al do not undergo solution decomposition.  相似文献   

8.
A simple Schiff base CTS, synthesized between 2-hydroxy-1-naphthaldehyde and 2-benzylthio-ethanamine, was found to be a good turn-on fluorescence probe for the detection of Zn2+, due to the restriction of the rotation of the bond between CN and naphthalene ring and/or the blocking of the photo-induced electron transfer (PET) mechanism of the nitrogen atom to naphthalene ring. Excellent selectivity for Zn2+ was evidenced, over many other competing ions, including Fe3+, Cr3+, Ni2+, Co2+, Fe2+,Mn2+, Ca2+, Hg2+, Pb2+, Cu2+, Mg2+, Ba2+, Cd2+, Ag+, Li+, K+, and Na+, in EtOH/HEPES buffer (95:5, v/v, pH = 7.4). It was noteworthy that Cd2+ had no interference with Zn2+. The stoichiometric complex of CTS-Zn2+ was determined to be 2:1 for CTS and Zn2+ in molar, based on the Job plot and single crystal X-ray diffraction data. The binding constant of the complex was 85.7 M?2 with a detection limit of 5.03 × 10?7 M. The fluorescence bio-imaging capability of CTS to detect Zn2+ in live cells was also studied. These results indicated that CTS could serve as a favorable probe for Zn2+.  相似文献   

9.
A simple, low cost and sensitive voltammetric sensor was developed for the simultaneous detection of Pb2+, Cd2+, and Zn2+ based on a disposable carbon fiber rod (CFR). The important factors to enhance the sensing property were creation of a clean surface by dealing with CFR at a high potential and electrochemical deposition of Bi film to improve the accumulation of heavy metal ions.  相似文献   

10.
《Vibrational Spectroscopy》2007,43(2):387-394
The metal ion distributions at the two metal sites (hexaformate-coordinated Me1 sites and mixed-coordinated Me2 sites) in the title mixed crystals as determined by single crystal X-ray diffraction and double matrix infrared spectroscopic methods are presented and discussed. The mixed formates are isostructural with the end compounds (space group P21/c). The local metal ion concentrations as a function of the total metal ion concentrations exhibit a clear preference of Zn2+ ions to Me1 sites and the Mg2+ ions to Me2 sites.The analysis of the infrared spectra reveals that the spectral regions 2300–2500 cm−1 (νOD of matrix-isolated HDO molecules) and 1300–1400 cm−1 (symmetric COO stretching (ν2) and bending CH (ν5) modes) are mostly sensitive to the metal ion environment. The inclusion of Mg2+ and Zn2+ in the structures of Zn(HCOO)2·2H2O and Mg(HCOO)2·2H2O, respectively, leads to an appearance of new infrared bands corresponding to νOD of HDO molecules bonded to the incorporated ions (i.e. new hydrogen bonding systems MgOH2⋯OCHOZn and ZnOH2⋯OCHOMg are formed in the mixed formates). The respective new bands are observed at small concentrations of included Mg2+ ions (about 5 mol%, x = 0.05) and at considerably higher concentrations of included Zn2+ ions (about 30 mol%, x = 0.7). Contrarily, the ν2 and ν5 modes caused by the incorporated cations bonded to formate ions occur at x  0.3 and x  0.85 (Mg2+ ions in Zn(HCOO)2·2H2O and Zn2+ ions in Mg(HCOO)2·2H2O, respectively). Thus, the infrared spectroscopy experiments confirm the single crystal X-ray measurements that the Mg2+ ions are localized predominantly at Me2 sites and the Zn2+ ions at Me1 sites in the title mixed crystals. The pronounced preference of the Mg2+ ions to Me2 sites is owing to the strong affinity of these ions to water molecules.  相似文献   

11.
The molar heat capacity of Zn2GeO4, a material which exhibits negative thermal expansion below ambient temperatures, has been measured in the temperature range 0.5⩽(T/K)⩽400. At T=298.15 K, the standard molar heat capacity is (131.86 ± 0.26) J · K−1 · mol−1. Thermodynamic functions have been generated from smoothed fits of the experimental results. The standard molar entropy at T=298.15 K is (145.12 ± 0.29) J · K−1 · mol−1. The existence of low-energy modes is supported by the excess heat capacity in Zn2GeO4 compared to the sums of the constituent binary oxides.  相似文献   

12.
In this work, we report a novel fluorescence chemosensor HM based on the coumarin fluorophore for the quantification of Zn2+ and AcO?. HM specifically binds to Zn2+ in the presence of other competing cations, and evident changes in UV–vis and fluorescence spectra in HEPES buffer are noticed. The in situ generated HM-Zn2+ complex solution exhibit a high selectivity toward AcO? via Zn2+ displacement approach. The detection limits of HM for Zn2+ and HM-Zn2+ for AcO? were estimated to be 7.24 × 10?8 M and 9.41 × 10?8 M, respectively. HM and the resultant complex HM-Zn2+ exhibit low cytotoxicity and cell-membrane permeability, which makes them capable of Zn2+ and AcO? imaging in living Hep G2 cells. A B3LYP/6-31G(d,p) basis set was employed for optimization of HM and HM-Zn2+ complex.  相似文献   

13.
《Solid State Sciences》2007,9(2):149-154
The mild-condition syntheses, single-crystal structures and properties of H3N(CH2)5NH3·Zn3(HPO3)4 and β-H3N(CH2)6NH3·Zn3(HPO3)4 are reported. Both are constructed from (3,4)-nets of ZnO4 tetrahedra and HPO3 pyramids, sharing vertices to result in three-dimensional anionic open-frameworks. In both materials, the organic species interacts with the framework by way of N–H⋯O bonds. Crystal data: H3N(CH2)5NH3·Zn3(HPO3)4, Mr = 620.22, orthorhombic, Pccn (No. 56), a = 9.5364 (9) Å, b = 21.8015 (19) Å, c = 9.1118 (7) Å, V = 1894.4 (3) Å3, Z = 4, R(F) = 0.044, wR(F2) = 0.111. β-H3N(CH2)6NH3·Zn3(HPO3)4, Mr = 634.25, monoclinic, P21/n (No. 14), a = 8.7627 (1) Å, b = 13.8117 (2) Å, c = 16.6187 (3) Å, β = 92.680 (1)°, V = 2009.12 (5) Å3, Z = 4, R(F) = 0.072, wR(F2) = 0.187.  相似文献   

14.
Zn-doped α-FeOOH nanofiber was synthesized by coprecipitation method. Then the α-FeOOH was enwraped by the complex of the Mn2+ and citric acid. The morphology of α-FeOOH did not transform after the calcination process and Mn0.5Zn0.5Fe2O4 nanofiber was successfully prepared. The phase, morphology, particle diameter and the magnetic properties of samples were studied by X-ray diffraction (XRD), transmission electron microscopy (TEM) and vibrating sample magnetometer (VSM). The results indicated that Mn0.5Zn0.5Fe2O4 nanofibers with an aspect ratio over 40 and a diameter of 20 nm were prepared. Compared with the amorphous Mn0.5Zn0.5Fe2O4, the anisotropy of the Mn0.5Zn0.5Fe2O4 nanofiber increased, resulting in the higher coercivity and magnetization of the obtained sample. With an increase in the calcination temperature, the diameter and the saturation magnetization of the sample increased, while the aspect ratio and coercivity decreased. The coercivity of the sample obtained at 700 °C was maximal (up to 185.4 Oe). The saturation magnetization of the sample obtained at 900 °C was maximal (up to 65.3 emu/g). The use of citric acid method prevented the presence of Mn(OH)2, resulting in the decrease of the calcination temperature.  相似文献   

15.
Two low cytotoxic fluorescence probes Rb1 and Rb2 detecting Fe3+ were synthesized and evaluated. Rb1 and Rb2 exhibited an excellent selectivity to Fe3+, which was not disturbed by Ag+, Li+, K+, Na+, NH4+, Fe2+, Pb2+, Ba2+, Cd2+, Ni2+, Co2+, Mn2+, Zn2+, Mg2+, Hg2+, Ca2+, Cu2+, Ce3+, AcO?, Br?, Cl?, HPO42?, HSO3?, I?, NO3?, S2O32?, SO32? and SO42? ions. The detection limits were 1.87 × 10?7 M for Rb1 and 5.60 × 10?7 M for Rb2, respectively. 1:1 stoichiometry and 1:2 stoichiometry were the most likely recognition mode of Rb1 or Rb2 towards Fe3+, and the corresponding OFF–ON fluorescence mechanisms of Rb1 and Rb2 were proposed.  相似文献   

16.
A novel fluorescent sensor (AQTF1) based on the N-(quinolin-8-yl) tetrahydrofuran-2-carboxamide was designed and synthesized. This new sensor demonstrated high selectivity for the Zn2+ without the interference from Cd2+. The detection limit of this probe was calculated to be 10.8 nM for Zn2+. The in situ prepared AQTF1-Zn2+ complex was used for detection of H2PO4? and displayed good selectivity from the common anions. Furthermore, the AQTF1 displayed good ratiometric response for the relay recognition for Zn2+ and H2PO4?.  相似文献   

17.
《Solid State Sciences》2007,9(11):1079-1084
Three ZnII coordination polymers with acetate and perchlorate anions, [Zn3(μ-bpa)4.5(AcO)3](ClO4)3·4.26H2O (1), [Zn2(μ-bpe)3(AcO)2](ClO4)2 (2) and [Zn2(bpe)(AcO)4] (3), bpa = 1,2-bis(4-pyridyl)ethane and bpe = 1,2-bis(4-pyridyl)ethene, have been synthesized and characterized by elemental analysis, IR, 1H NMR, and 13C NMR spectroscopies, and the structure of compound 1 was determined by single-crystal X-ray diffraction. The thermal stabilities of compounds 13 were studied by thermal gravimetric (TG) and differential thermal analyses (DTA). The structural studies of compound 1 show that the structure may be considered as a three-dimensional coordination polymer of zinc(II) with large voids filled with disordered water molecules. The stability of the porous networks after removal of the guest water molecules is confirmed by X-ray powder diffraction.  相似文献   

18.
《Solid State Sciences》2004,6(8):825-829
K2NiF4 type LaSrAlO4 was synthesised by sol–gel and combustion methods at 1300 °C and characterised by X-ray diffraction (XRD). DC electrical conductivity studies revealed that LaSrAlO4 is an n-type conductor at low oxygen partial pressures and a p-type conductor at near atmospheric pressures with conductivity of the order of 10−4 S cm−1. Dilatometric measurements indicated a nonlinear increase in the thermal expansion coefficient, corroborated by a nonlinear expansion along the a axis determined by high temperature XRD. Attempts to synthesise oxygen excess La1+xSr1−xAlO4+δ phases by varying the La:Sr ratio always resulted in a La2O3 secondary impurity phase.  相似文献   

19.
《Solid State Sciences》2004,6(9):907-913
The total electrical conductivity of strontium ferrites, including intergrowth Sr4Fe6O13+δ, Sr3Fe2O6+δ with a Ruddlesden–Popper structure, and SrFeO2.5+δ where the cubic perovskite lattice transforms into vacancy-ordered brownmillerite at p(O2)<10 Pa and T<850 °C, was measured at 650–1000 °C in the oxygen partial pressure range 10−15 Pa to 50 kPa. The data were used in order to determine partial ion, p- and n-type electron contributions in the vicinity of electron–hole equilibrium point. The ferrites with brownmillerite and Ruddlesden–Popper structures exhibit substantial ion transport due to thermally-activated disordering of oxygen vacancies and oxygen ions in the perovskite structural slabs, whereas the ion conductivity of Sr4Fe6O13+δ remains below 0.01 S cm−1 in the studied conditions. The bonding energy of oxygen ions, evaluated from the formation enthalpy of n-type charge carriers, increases in the sequence Sr4Fe6O13+δ<SrFeO3+δ<Sr3Fe2O6+δ. These values correlate with thermodynamic stability of strontium ferrites at low p(O2). The transition of SrFeO2.5+δ brownmillerite into disordered cubic phase above 850 °C leads to higher stability in reducing atmospheres. The level of p-type conductivity is mainly governed by the concentration of electron holes, which was calculated from the oxygen content determined by coulometric titration technique. The hole mobility, which is quite similar for all strontium ferrites and has a temperature-activated character, varies in the range 0.005–0.05 cm2 V−1 s−1 indicative of small-polaron conduction mechanism.  相似文献   

20.
Two hexanuclear zinc(II) complexes, [Zn6(L1)22-OH)22-CH3COO)8] · CH3CN (1 · CH3CN) and [Zn6(L2)22-OH)22-CH3COO)8] · 4CH3CN (2 · 4CH3CN), where HL1 = 4-methyl-2,6-bis(cyclohexylmethyliminomethyl)-phenol and HL2 = 4-methyl-2,6-bis(1-naphthalylmethyliminomethyl)-phenol, have been synthesized and characterized by elemental analysis, FT-IR and fluorescence spectroscopic methods, and by X-ray diffraction analysis. In the asymmetric unit of complex 1, two of the three zinc atoms have pentacoordinate geometries and the other is tetrahedrally coordinated, whereas the three distinct Zn atoms in complex 2 adopt three different coordination environments, namely distorted octahedral, trigonal bipyramidal and tetrahedral. The fluorescence properties of the ligands and complexes have been investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号