首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Li4SiO4 ceramic pebble is considered as a candidate tritium breeding material of Chinese Helium Cooled Solid Breeder Test Blanket Module(CH HCSB TBM) for the International Thermonuclear Experimental Reactor(ITER).In this paper,Li4SiO4 ceramic pebbles deposited with catalytic metals,including Pt,Pd,Ru and Ir,were prepared by wet impregnation method.The metal particles on Li4SiO4 pebble exhibit a good promotion of hydrogen isotope exchange reactions in H 2-D 2 O gas system,with conversion equilibrium temperature reduction of 200-300 8C.The out-of-pile tritium release experiments were performed using 1.0 wt% Pt/Li4SiO4 and Li 4 SiO 4 pebbles irradiated in a thermal neutron reactor.The thermal desorption spectroscopy shows that Pt was effective to increase the tritium release rate at lower temperatures,and the ratio of tritium molecule(HT) to tritiated water(HTO) of 1.0 wt% Pt/Li4SiO4 was much more than that of Li4SiO4,which released mainly as HTO.Thus,catalytic metals deposited on Li4SiO4 pebble may help to accelerate the recovery of bred tritium particularly in low temperature region,and increase the tritium molecule form released from the tritium breeding materials.  相似文献   

2.
First-principles calculations were firstly employed to investigate the adsorption of methanol on pristine and X-doped phosphorene (X=B, C, N and O). The N and O doping improved the adsorption of phosphorene with CH3OH gas molecule, while B and C doping were almost not beneficial.  相似文献   

3.
The solubility and the density in the aqueous ternary system (Li2SO4 + MgSO4 + H2O) at T = 308.15 K were determined by the isothermal evaporation. Our experimental results permitted the construction of the phase diagram and the plot of density against composition. It was found that there is one eutectic point for (Li2SO4 · H2O + MgSO4 · 7H2O), two univariant curves, and two crystallization regions corresponding to lithium sulphate monohydrate (Li2SO4 · H2O) and epsomite (MgSO4 · 7H2O). The system belongs to a simple co-saturated type, and neither double salts nor solid solution was found. Based on the Pitzer ion-interaction model and its extended HW models of aqueous electrolyte solution, the solubility of the ternary system at T = 308.15 K has been calculated. The predicted solubility agrees well with the experimental values.  相似文献   

4.
A magnesium-based metal organic framework (MOF), also known as Mg-MOF-74, was successfully synthesized, characterized, and evaluated for adsorption equilibria and kinetics of CO2 and CH4. The Mg-MOF-74 crystals were characterized with scanning electron microscopy for crystal structure, powder X-ray diffraction for phase structure, and nitrogen adsorption for pore textural properties. Adsorption equilibrium and kinetics of CO2 and CH4 on the Mg-MOF-74 adsorbent were measured in a volumetric adsorption unit at 278, 298, and 318 K and pressures up to 1 bar. It was found that the Mg-MOF-74 adsorbent prepared in this work has a median pore width of 10.2 Å, a BET specific surface area of 1174 m2/g, CO2 and CH4 adsorption capacities of 8.61 mmol g?1 (37.8 wt.%) and 1.05 mmol g?1 (1.7 wt.%), respectively, at 298 K and 1 bar. Both CO2 and CH4 adsorption capacities are significantly higher than those of zeolite 13X under similar conditions. The pressure-dependent equilibrium selectivity of CO2 over CH4 (qCO2/qCH4) in the Mg-MOF-74 adsorbent showed a trend similar to that of zeolite 13X and the intrinsic selectivity of Mg-MOF-74 at zero adsorption loading is 283 at 298 K. The initial heats of adsorption of CO2 and CH4 on the Mg-MOF-74 adsorbent were found to be 73.0 and 18.5 kJ mol?1, respectively. The adsorption kinetic measurements suggest that the diffusivities of CO2 and CH4 on Mg-MOF-74 were comparable to those on zeolite 13X. CH4 showed relatively faster adsorption kinetics than CO2 in both adsorbents. The diffusion time constants of CO2 and CH4 in the Mg-MOF-74 adsorbent at 298 K were estimated to be 8.11 × 10?3 and 4.05 × 10?2 s?1, respectively, showing a modest kinetic selectivity of about 5 for the separation CH4 from CO2.  相似文献   

5.
Crystalline phase and surface morphology of phosphors are important factors to determine luminescent characteristics. Li-doped YVO4:Eu3+ ceramic samples were prepared by a solid state reaction method. The Li+ concentration was varied from 1 to 3 wt% to improve crystallinity and surface morphology of ceramics. Influence of Li doping on luminescent properties of YVO4:Eu3+ ceramics has been investigated. Photoluminescence spectra have been measured at room temperature using a luminescence spectrometer and excitation by a broadband incoherent ultraviolet light source with an excitation wavelength of 325 nm. The emitted radiation was dominated by a red emission peak at 620 nm radiated from the 5D0  7F2 transition of Eu3+ ions. As Li+ ion content increases from 0 to 2 wt%, the photoluminescence (PL) brightness improved. The brightness of 2 wt% Li-doped YVO4:Eu3+ ceramic was increased by a factor of 1.43 in comparison with that of YVO4:Eu3+ ceramic. The enhanced luminescence resulted not only from the improved crystallinity but also from the enhanced surface roughness. The luminescent intensity and surface roughness exhibited similar behavior as a function of Li+ ion concentration.  相似文献   

6.
Hexagonal Li2MgSnO4 compound was synthesized at 800 °C using Urea Assisted Combustion (UAC) method and the same has been exploited as an anode material for lithium battery applications. Structural investigations through X-ray diffraction, Fourier Transform Infra Red spectroscopy and 7Li NMR (Nuclear Magnetic Resonance spectroscopy) studies demonstrated the existence of hexagonal crystallite structure with a = 6.10 and c = 9.75. An average crystallite size of ∼400 nm has been calculated from PXRD pattern, which was further evidenced by SEM images. An initial discharge capacity of ∼794 mA h/g has been delivered by Li2MgSnO4 anode with an excellent capacity retention (85%) and an enhanced coulombic efficiency (97–99%). Further, the Li2MgSnO4 anode material has exhibited a steady state reversible capacity of ∼590 mA h/g even after 30 cycles, thus qualifying the same for use in futuristic lithium battery applications.  相似文献   

7.
Exotic metal (EM) doping in LiFePO4 materials could mitigate their poor electronic conductivity and electrochemical performance. This effect is believed to be dependent on the EM dwelling site, which has yet been well clarified due to experimental difficulty. Herein, we report on Mg-doped LiFePO4 samples with dopant in two distinct sites, namely the Li1  2xMgxFePO4 and LiFe1  xMgxPO4, using a specially designed two-step reaction. The conductivity and electrochemical test results are a clear indication that the performance of the doped LiFePO4 samples is highly Mg site dependent, consistent with theoretical analysis.  相似文献   

8.
This work aims to maximize the number of active sites for energy storage per geometric area, by approaching the investigation to 3D design for microelectrode arrays. Self-organized Li4Ti5O12/TiO2/Li3PO4 composite nanoforest layer (LTL) is obtained from a layer of self organized TiO2/Li3PO4 nanotubes. The electrochemical response of this thin film electrode prepared at 700 °C exhibited lithium insertion and de-insertion at 1.55 and 1.57 V respectively, which is the typical potential found for lithium titanates. The effects of lithium phosphate on lithium titanate are explored for the first time. By cycling between 2.7 and 0.75 V the LTL/LiFePO4 full cell delivered 145 mA h g 1 at an average potential of 1.85 V leading to an energy density of 260 W h kg 1 at C/2. Raman spectroscopy revealed that the γ-Li3PO4/lithium titanate structure is preserved after prolonged cycling. This means that Li3PO4 plays an important role for enhancing the electronic conductivity and lithium ion diffusion.  相似文献   

9.
A composite of silica (SiO2) and hard carbon was prepared by hydrothermal reaction. Special attention was paid to the characterization of the possible electrochemical reduction of nano-SiO2 in the composite. Evidence by solid-state nuclear magnetic resonance (NMR) and X-ray photoelectron spectroscopy (XPS) and high lithium storage capacity of the composite prove the electrochemical reduction of nano-SiO2 and the formation of Li4SiO4 and Li2O as well as Si in the first-discharge. The reversible lithium storage capacity of the nano-SiO2 is as high as 1675 mAh/g.  相似文献   

10.
This report describes the detailed structural and electrochemical characterization of a series of low content (0.01 to 0.05) Cu-Cr bi-metal doped LiMn2O4 cathode material synthesized by sol–gel method. The structural and morphological features were described using XRD, SEM, TEM, EDAX and FTIR techniques. The electron transfer and its feasibility were discussed through cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) measurements. The charge–discharge studies were performed to evaluate the capacity fading and rate capability. It was found that the electrochemical performance is very much dependent on the amount of Cu-Cr bi-metal doping and interestingly decreased the capacity fading with high cycleability. The sample with the least amount of dopants (i.e., LiCu0.01Cr0.01Mn1.98O4) demonstrated much improved capacity, cycleability and high rate capability. The LiCu0.01Cr0.01Mn1.98O4 cathode exhibited a discharge capacity of 112 mA h g?1 at very first cycle and retained 93 mA h g?1 after 100 cycles at a C rate of 0.3. Further, the same material at very high current density (5 C) retained 83% of the initial discharge capacity. The Cu-Cr doping stabilized the spinel structure by suppressing the Jahn-Teller distortion effect and Mn dissolution and the resultant material showed the workability of the cathodes for devices which work at substantially high C-rate of 5C.  相似文献   

11.
In this paper, a novel Nafion/SiO2 nanocomposite membrane based on the self-assembled Nafion–SiO2 nanoparticles was developed. The average particle size of Nafion–SiO2 nanoparticles prepared by self-assembly process was 2.8 ± 0.5 nm. The self-assembled Nafion–SiO2 nanoparticles significantly enhance the durability of the Nafion/silica nanocomposite membrane as compared to that of conventional Nafion/silica composite and Nafion 212 membranes under wet/dry cyclic tests at 90 °C. With an addition of 5 wt% self-assembled Nafion–SiO2 nanoparticles, the Nafion/SiO2 nanocomposite membrane shows a significantly improved performance stability at cell/humidifying temperatures of 100 °C/60 °C under a current density of 600 mA/cm2, and the degradation rate is 0.12 mV/min, almost 20 times lower than 2.33 mV/min measured on the pristine Nafion 212 membrane under the same conditions. The present results demonstrate the promises of the self-assembled Nafion/SiO2 nanocomposite membrane for elevated-high temperature PEM fuel cells applications.  相似文献   

12.
In this paper, flower-like spinel Li4Ti5O12 consisting of nanosheets was synthesized by a hydrothermal process in glycol solution and following calcination. The as-prepared product was characterized by scanning electron microscopy, transmission electron microscopy, X-ray powder diffraction and cyclic voltammetry. The capacity of the sample used as anode material for lithium ion battery was measured. This structured Li4Ti5O12 exhibited a high reversible capacity and an excellent rate capability of 165.8 m Ahg−1 at 8 C, indicating potential application for lithium ion batteries with high rate performance and high capacity.  相似文献   

13.
In this paper, we report structural, electrical, optical, and especially thermoelectrical characterization of iron (Fe) doped tin oxide films, which have been deposited by spray pyrolysis technique. The doping level has changed from 0 to 10 wt% in solution ([Fe]/[Sn] = 0–40 at% in solution). The thermoelectric response versus temperature difference has exhibited a nonlinear behavior, and the Seebeck coefficient has been calculated from its slope in temperature range of 300–500 K. The Hall effect and thermoelectric measurements have shown p-type conductivity in SnO2:Fe films with [Fe]/[Sn]  7.8 at%. In doping levels lower than 7.8 at%, SnO2:Fe films have been n-type with a negative thermoelectric coefficient. The Seebeck coefficient for SnO2:Fe films with 7.8 at% doping level has been obtained to be as high as +1850 μV/K. The analysis of as-deposited samples with thicknesses ~350 nm by X-ray diffraction (XRD) and scanning electron microscopy (SEM) has shown polycrystalline structure with clear characteristic peak of SnO2 cassiterite phase in all films. The optical transparency (T%) of SnO2:Fe films in visible spectra decreases from 90% to 75% and electrical resistivity (ρ) increases from 1.2 × 10?2 to 3 × 103 Ω cm for Fe-doping in the range 0–40 at%.  相似文献   

14.
We report a "soft" graphene oxide-organopolysulfide nanocomposite with improved pseudocapacitive performance for high-potential (1-2.8 V vs. Li0/Li+), high-capacity (278 mAh/g) and stable (500 cycles) lithium storage.  相似文献   

15.
Zirconia nanotube-supported H3PW12O40 (HPW) catalysts exhibit high catalytic activities in the synthesis of fatty acid ethyl ester.  相似文献   

16.
An experimental study on metastable equilibria at T=288 K in the quinary system Li2CO3 + Na2CO3 + K2CO3 + Li2B4O7 + Na2B4O7 + K2B4O7 + H2O was done by isothermal evaporation method. Metastable equilibrium solubilities and densities of the solution were determined experimentally. According to the experimental data, the metastable equilibrium phase diagram under the condition saturated with Li2CO3 was plotted, in which there are four invariant points; nine univariant curves; six fields of crystallization: K2CO3 · 3/2H2O, K2B4O7 · 5H2O, Li2B2O4 · 16H2O, Na2B2O4 · 8H2O, Na2CO3 · 10H2O, NaKCO3 · 6H2O. Some differences were found between the stable phase diagram at T=298 K and the metastable one at T=288 K.  相似文献   

17.
Based on van der Waals corrected density functional theory, we show that Na atoms acting as decoration metals are not inclined to form clusters due to a large binding energy of 3.31 eV, indicating a promising good reversible hydrogen storage. Both the polarization mechanism and the orbital hybridizations contribute to the adsorption of hydrogen molecules (storage capacity of 4.4 wt%) with optimal adsorption energy of 0.25 eV/H2. Additionally, the dimerization of these isolated B36 does not remarkably affect the number of adsorbed H2 per Na atom. Our results may serve as a guide in the design of new hydrogen storage materials based on low-dimension boron clusters.  相似文献   

18.
Anatase TiO2 surfaces, whether oxidised or hydroxylated, can be modified by nanoclusters of SnO and MgO to give a red shift in light absorption, enhanced charge separation and high reducibility.  相似文献   

19.
Structural and electronic properties of Li4Ti5O12 spinel are studied from density functional theory based first principles calculations. Differences on these properties between delithiated state Li4Ti5O12 and lithiated state Li7Ti5O12 are compared. The optimized lattice constant of Li4Ti5O12 is 8.619 Å, which is even a little larger (0.2%) than 8.604 Å of the lithiated state Li7Ti5O12. The arrangement of the Li and Ti atoms at the 16d sites of the spinel structure is also investigated in a cubic unit cell. Large 1 × 1 × 3 supercell models are constructed and used to calculate the total energy and electronic structure. The average intercalation potential is also calculated, with metallic lithium as reference.  相似文献   

20.
A typical superparamagnetic nanoparticles-based dithiocarbamate absorbent (Fe3O4@SiO2-DTC) with core-shell structure was applied for aqueous solution heavy metal ions Ni2+, Cu2+ removal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号