首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A reversed phase high performance liquid chromatographic method combined with fluorescence and mass spectrometric detection in series is presented for the separation and quantification of bisphenol A diglycidyl ether (BADGE) and novolac glycidyl ether (NOGE) derivatives in extracts from food can coatings, tuna and oil. Fifteen samples of tuna cans bought in four European countries were investigated. Atmospheric pressure chemical ionization mass spectrometry in the positive ion mode (APCI(+)-MS) allowed to tentatively identify BADGE and NOGE related compounds originating from reactions of the glycidyl ethers with bisphenols, phenol, butanol, water and hydrochloric acid. Quantification was based on the external standard method and fluorescence detection. Mass fractions up to 3.7 micrograms/g were found for hydrochlorination products of bisphenol F diglycidyl ether (BFDGE + 2HCl) in tuna. Furthermore, total migration quantities of phenolic ether compounds were estimated. The highest values found were 20 micrograms/g in tuna and 43 micrograms/g in the oil phase.  相似文献   

2.
A reversed-phase liquid chromatographic method combined with fluorescence and multiple mass spectrometric detection in series is presented for the separation and structure elucidation of bisphenol A diglycidyl ether (BADGE) and novolac glycidyl ether (NOGE) derivatives. Atmospheric pressure chemical ionization in the positive ion mode and collision induced fragmentation in the ion trap allowed identification of BADGE- and NOGE-related compounds originating from reactions of the glycidyl ethers with bisphenols, solvents, and chain stoppers. Two extracts from food-can coatings were investigated in detail. It was possible to elucidate the structures of many substances and consequently to draw conclusions about the production of the lacquers.  相似文献   

3.
An improved analytical method enabling rapid and accurate determination and identification of bisphenol F diglycidyl ether (novolac glycidyl ether 2-ring), novolac glycidyl ether 3-ring, novolac glycidyl ether 4-ring, novolac glycidyl ether 5-ring, novolac glycidyl ether 6-ring, bisphenol A diglycidyl ether, bisphenol A (2,3-dihydroxypropyl) glycidyl ether, bisphenol A (3-chloro-2-hydroxypropyl) glycidyl ether, bisphenol A bis(3-chloro-2-hydroxypropyl) ether, and bisphenol A (3-chloro-2-hydroxypropyl) (2,3-dihydroxypropyl) ether in canned food and their contact packaging materials has been developed by using, for the first time, ultra-performance liquid chromatography coupled with tandem mass spectrometry. After comparison of electrospray ionization and atmospheric pressure chemical ionization in positive and negative-ion modes, tandem mass spectrometry with positive electrospray ionization was chosen to carry out selective multiple reaction monitoring analysis of novolac glycidyl ethers, bisphenol A diglycidyl ether, and its derivatives. The analysis time is only 5.5 min per run. Limits of detection varied from 0.01 to 0.20 ng g(-1) for the different target compounds on the basis of a signal-to-noise ratio (S/N) = 3; limits of quantitation were from 0.03 to 0.66 ng g(-1). The relative standard deviation for repeatability was <8.01%. Analytical recovery ranged from 87.60 to 108.93%. This method was successfully applied to twenty samples of canned food and their contact packaging materials for determination of migration of NOGE, BADGE, and their derivatives from can coatings into food.  相似文献   

4.
赵晓亚  付晓芳  王鹏  李晶  胡小钟 《色谱》2012,30(10):1002-1007
建立了同时测定肉类罐头中双酚A-二缩水甘油醚(BADGE)、双酚F-二缩水甘油醚(BFDGE)及其衍生物双酚A-(2,3-二羟丙基)甘油醚(BADGE•H2O)、双酚A-双(2,3-二羟丙基)醚(BADGE•2H2O)、双酚A-(3-氯-2-羟丙基)(2,3-二羟丙基)醚(BADGE•H2O•HCl)、双酚A-(3-氯-2-羟丙基)甘油醚(BADGE•HCl)、双酚A-双(3-氯-2-羟丙基)醚(BADGE•2HCl)、双酚F-双(2,3-二羟丙基)醚(BFDGE•2H2O)、双酚F-双(3-氯-2-羟丙基)醚(BFDGE•2HCl)9种环境激素的高效液相色谱-串联质谱分析方法。样品经叔丁基甲醚提取,HLB固相萃取小柱净化,C18色谱柱分离,用5 mmol/L醋酸铵溶液(含0.1%甲酸)与甲醇为流动相梯度洗脱,质谱多反应监测(MRM)模式检测,基质标准校正,外标法定量。结果表明,这9种化合物在10.0~2000.0 μg/L范围内线性关系良好;定量限(以信噪比≥10计)为10.0 μg/kg;在高、中、低3个加标水平下9种化合物的平均添加回收率为79.6%~100.9%,相对标准偏差为6.3%~12.1%。该方法具有较高的灵敏度和准确度,能满足法规要求的对肉类罐头中双酚A-二缩水甘油醚、双酚F-二缩水甘油醚及其衍生物残留量的快速检测及准确定量。  相似文献   

5.
A microwave‐assisted extraction (MAE) protocol and an efficient HPLC analysis method were first developed for the fast extraction and simultaneous determination of bisphenol F diglycidyl ether (Novolac glycidyl ether 2‐Ring), Novolac glycidyl ether 3‐Ring, Novolac glycidyl ether 4‐Ring, Novolac glycidyl ether 5‐Ring, Novolac glycidyl ether 6‐Ring, bisphenol A diglycidyl ether, bisphenol A (2,3‐dihydroxypropyl) glycidyl ether, bisphenol A (3‐chloro‐2‐hydroxypropyl) glycidyl ether, bisphenol A bis(3‐chloro‐2‐hydroxypropyl) ether, bisphenol A (3‐chloro‐2‐hydroxypropyl) (2,3‐dihydroxypropyl) ether in canned fish and meat. After being optimized in terms of solvents, microwave power and irradiation time, MAE was selected to carry out the extraction of ten target compounds. Analytes were purified by poly(styrene‐co‐divinylbenzene) SPE columns and determinated by HPLC‐fluorescence detection. LOD varied from 0.79 to 3.77 ng/g for different target compounds based on S/N=3; LOQ were from 2.75 to 10.92 ng/g; the RSD for repeatability were <8.64%. The analytical recoveries ranged from 70.46 to 103.44%. This proposed method was successfully applied to 16 canned fish and meat, and the results acquired were in good accordance with the studies reported. Compared with the conventional liquid–liquid extraction and ultrasonic extraction, the optimized MAE approach gained the higher extraction efficiency (20–50% improved).  相似文献   

6.
Summary A fluorimetric-detection RP-HPLC method is developed for the separation and quantification of bisphenol A diglycidyl ether (BADGE), bisphenol F diglycidyl ether (BFDGE), its hydrolysis and chlorohydroxy derivatives, and NOGE and BADGE oligomers. This method was applied to test an epoxy resin used as a coating for food contact packaging materials with two different heat treatments in the curing process. Migration of these compounds was evaluated in three food simulants: 3% (w/v) acetic acid, 10% (v/v) ethanol, rectified olive oil and also in acetonitrile. A simple extraction procedure was also applied to obtain olive oil extracts. Quantification was performed by using external calibration, and correlation coefficients were greater than 0,996 and the limit of detection (LOD) was 0.02 mg L–1 for all substances. HPLC-MS method was applied to confirm derivatives and oligomers identity.Presented at: International Symposium on Separation and Characterization of Natural and Synthetic Macromolecules, Amsterdam, The Netherlands, February 5–7, 2003  相似文献   

7.
吴新华  丁利  李忠海  张彦丽  刘晓霞  王利兵 《色谱》2010,28(11):1094-1098
建立了测定食品接触材料中6种双酚-二环氧甘油醚(双酚A二缩水甘油醚(BADGE)及其衍生物双酚A(2,3-二羟丙基)甘油醚(BADGE•H2O)、双酚A(3-氯-2-羟丙基)甘油醚(BADGE•HCl)、双酚A(3-氯-2-羟丙基)(2,3-二羟丙基)醚(BADGE•H2O•HCl)和双酚F二缩水甘油醚(BFDGE)及其衍生物双酚F双(3-氯-2-羟丙基)甘油醚(BFDGE•2HCl))迁移到食品中的迁移量的高效液相色谱-串联质谱法(HPLC-MS/MS)。样品以叔丁基甲醚(MTBE)为提取溶剂,超声提取,提取液经多壁碳纳米管(MWCNTs)固相萃取(SPE)柱富集、净化。以COSMOSIL C18为分析柱,流动相为0.1%甲酸的5 mmol/L醋酸铵溶液和甲醇。6种双酚-二环氧甘油醚在1.0~100 μg/L范围内线性关系良好(r2>0.9991)。在3个添加水平下,6种目标化合物的回收率范围为78.6%~89.9%,相对标准偏差小于10%。方法检出限范围为0.5~1.5 μg/L。该方法操作简单,灵敏度高,可应用于食品接触材料中双酚-二环氧甘油醚迁移量的快速检测。  相似文献   

8.
张海婧  林少彬 《色谱》2014,32(7):730-734
建立了水中8种双酚-二环氧甘油醚(双酚A二缩水甘油醚(BADGE)及其衍生物双酚A(3-氯-2-羟丙基)甘油醚(BADGE·5HCl)、双酚A双(3-氯-2-羟丙基)醚(BADGE·52HCl)、双酚A(2,3-二羟丙基)甘油醚(BADGE·5H2O)、双酚A双(2,3-二羟丙基)醚(BADGE·52H2O)、双酚A(3-氯-2-羟丙基)(2,3-二羟丙基)醚(BADGE·5HCl·5H2O)和双酚F-二环氧甘油醚(BFDGE)及其衍生物双酚F双(3-氯-2-羟丙基)醚(BFDGE·52HCl))的固相萃取-高效液相色谱-串联质谱(SPE-HPLC-MS/MS)测定方法。10个饮用水接触涂料样品在室温避光条件下,以超纯水浸泡(24±1)h,然后取200 mL经C18固相萃取柱进行净化浓缩,以C18色谱柱进行分离,以5 mmol/L醋酸铵、甲醇和水为流动相进行梯度洗脱,质谱多反应监测(MRM)模式检测,外标法定量。结果表明,8种双酚-二环氧甘油醚在0.007~5.00 μg/L线性关系良好,相关系数均大于0.9990,该方法对8种双酚-二环氧甘油醚的定量限为7~91 ng/L,回收率为79.1%~101%,RSD为4.0%~12%。该方法具有灵敏度高、选择性强的特点,能够满足水中双酚-二环氧甘油醚的快速检测和准确定量。  相似文献   

9.
In this work a fast liquid chromatography coupled with tandem mass spectrometry (LC–MS/MS) method using a C18 Fused Core™ column, was developed for the simultaneous analysis of bisphenol A diglycidyl ether (BADGE), bisphenol A (2,3-dihydroxypropyl) glycidyl ether (BADGE·H2O), bisphenol A bis(2,3-dihydroxypropyl) ether (BADGE·2H2O), bisphenol A (3-chloro-2-hydroxypropyl) glycidyl ether (BADGE·HCl), bisphenol A bis(3-chloro-2-hydroxypropyl) ether (BADGE·2HCl) and bisphenol A (3-chloro-2-hydroxypropyl)(2,3-dihydroxypropyl ether) (BADGE·HCl·H2O) and bisphenol F diglycidyl ether (BFDGE), bisphenol F bis(2,3-dihydroxypropyl) ether (BFDGE·2H2O), bisphenol F bis(3-chloro-2-hydroxypropyl) ether (BFDGE·2HCl). The LC method was coupled with a triple quadrupole mass spectrometer, using an ESI source in positive mode and using the [M+NH4]+ adduct as precursor ion for tandem mass spectrometry experiments. The method developed was applied to the determination of these compounds in canned soft drinks and canned food. OASIS HLB solid phase extraction (SPE) cartridges were used for the analysis of soft drinks, while solid canned food was extracted with ethyl acetate. Method limits of quantitation ranged from 0.13 μg L−1 to 1.6 μg L−1 in soft drinks and 1.0 μg kg−1 to 4.0 μg kg−1 in food samples. BADGE·2H2O was detected in all the analyzed samples, while other BADGEs such as BADGE·H2O, BADGE·HCl·H2O, BADGE·HCl and BADGE·2HCl were also detected in canned foods.  相似文献   

10.
European Legislation establishes that the sum of the migration levels of bisphenol A diglycidyl ether (BADGE), its hydrolysis (BADGE.H2O and BADGE.2H2O) and chlorohydroxy (BADGE.HCl, BADGE.2HCl and BADGE.H2O.HCl) derivatives shall not exceed the limit of 1 mg/kg in foodstuffs or food simulants. A reversed-phase high-performance liquid chromatographic (RP-HPLC) method combined with mass spectrometry detection using atmospheric pressure chemical ionisation (APCI) is developed for the separation, quantification and identification of the interesting compounds. Quantification of the analytes was carried out in the single ion recording mode, once their characteristic masses were selected from their full spectra, by using an external calibration. The optimised method was suitable for the migration evaluation of these compounds in different samples.  相似文献   

11.
The fragmentation of bisphenol A diglycidyl ether (BADGE), bisphenol F diglycidyl ether (BFDGE) and their derivatives was studied by electrospray ionization tandem mass spectrometry. Multiple-stage mass spectrometry and accurate mass measurements were combined to establish the fragmentation pathways. BADGEs and BFDGEs tend to form ammonium adducts under electrospray conditions which fragmented easily. The fragmentation of [M+NH(4)](+) for BADGEs started with the cleavage of the phenyl-alkyl bond, which was followed by the α-cleavage of the ether group to generate the characteristic product ions at m/z 135, [C(9)H(11)O](+), and m/z 107, [C(7)H(7)O](+). The fragmentation of the BFDGE isomer mixtures was studied by on-line reversed-phase liquid chromatography coupled to multiple-stage mass spectrometry (LC/MS(n)). Information obtained from product ion spectra for each BFDGE isomer and its comparison with the fragmentation pathway of BADGE allowed each isomer and the chromatographic elution order to be identified.  相似文献   

12.
Summary The first-order degradation kinetics of bisphenol A diglycidyl ether (BADGE; CAS No. 1675-54-3) has been studied in three water-based food simulants (3% (W/V) acetic acid, distilled water and 15% (V/V) ethanol) at various temperatures. BADGE and its first and second hydrolysis products were determined by reversed-phase high-performance liquid chromatography with fluorescence detection. Nonlinear regression was used to fit the experimental data at 40, 50 and 60°C with the proposed kinetic equations; Arrhenius' equation was then fitted to the rate constants obtained and the kinetic models were tested by comparing experimental data obtained at 70°C with the kinetic curves calculated using the rate constants predicted for this temperature. The half-life of BADGE was longest in ethanol and shortest in acetic acid. The rings opening in acetic acid appears to happen by means of active hydrogens whereas in the other simulants it is mainly influenced by the formation of acid/base adducts. The results imply that resins which comply with existing legislation on the migration of unreacted monomer may still contaminate foodstuffs.  相似文献   

13.
A new method has been developed to simultaneously analyse bisphenol A (BPA) and bisphenol A diglycidyl ether (BADGE) in aqueous based food simulants. The method consists on direct immersion solid-phase microextraction (SPME) of the analytes from the liquid matrix and subsequent chromatographic analysis by gas chromatography-mass spectrometry. Using the proposed method, a whole analysis (including chromatographic step) can be completed in less than 40 min, with minimum sample handling. The SPME method shows good analytical performance for simultaneous BPA and BADGE analysis, except for BADGE determination in the aqueous alcohol (simulant C) solution. Detection limits ranging from 0.1 to 2.0 ng/g for BPA and from 13 to 15 ng/g from BADGE were obtained, with a linear range from the low-ng/g to several-microg/g range for BPA and from 0.1 microg/g to 40 microg/g for BADGE. A possible optimisation method has been also developed and introduced.  相似文献   

14.
高效液相色谱法分析矿泉水中酚类化合物   总被引:23,自引:1,他引:22  
张学俊  吴仁安 《色谱》1998,16(6):530-531
用带荧光检测器的高效液相色谱法同时测定了矿泉水中的苯酚、甲酚、双酚A、双酚F、4-叔丁酚、双酚A二环氧甘油醚和双酚F二环氧甘油醚等,水样经液-固萃取浓缩后再进行分析,检测限可达0.1~0.2μg/L。重复测定的标准偏差为1.12%~13.21%,水样测定的回收率为81%~105%。  相似文献   

15.
A new confirmatory method for simultaneous determination of bisphenol diglycidyl ether residues (BADGE, BADGE.H(2)O, BADGE.2H(2)O, BADGE.H(2)O.HCl, BADGE.HCl, BADGE.2HCl, BFDGE and BFDGE.2HCl) from canned food has been developed. The proposed method includes extraction by pressurized liquid extraction (PLE) followed by liquid-liquid partition and purification by solid phase extraction (SPE). Several solvent systems and different operating conditions (time, temperature) have been investigated for PLE optimization. A reversed-phase high-performance liquid chromatography (RP-HPLC) coupled to atmospheric pressure chemical ionisation tandem mass spectrometry (APCI-MS-MS) method was developed for the separation, quantification and confirmation. The ion source settings were optimized using a design of experiments (DOE). The optimized method was applied to the determination of these chemicals at very low levels in different samples with a quantification limit of 5 ng/g. Recoveries ranged between 82 and 101% and standard deviations were less than 10%.  相似文献   

16.
Summary The need to determine the migration of toxic unreacted compounds in bisphenol diglycidyl ether epoxy resins prompted us to investigate the HPLC properties of bisphenol F diglycidyl ether and its hydrolysis products in the water-based food simulants 3% (w/v) acetic acid, distilled water and 15% (v/v) ethanol. Peaks were identified by reversed-phase HPLC thermospray mass spectrometry and gas chromatography/mass spectrometry.  相似文献   

17.
A quick and inexpensive validated method, based on sample treatment by liquid–liquid microextraction followed by liquid chromatography (LC) coupled with ultraviolet tandem fluorescence detection is proposed for the determination of 15 multiclass pollutants both in serum and in saliva, as a simple and easy to draw matrix. The method was set up and validated according to European guidelines. The compounds of interest include some endocrine‐disrupting chemicals (i.e. bisphenol A, bisphenol B, bisphenol E, bisphenol F, bisphenol AF, bisphenol A diglycidyl ether, bisphenol M, diethylhexyl phthalate, monoethylhexyl phthalate, triclosan and 4‐nonylphenol), as well as other pollutants belonging to the class of volatile organic compounds (2‐chlorophenol, 1,2 dichlorobenzene, 1,2,4,5‐tetrachlorobenzene). The limits of quantifications ranged from 2.28 × 10?3 μg mL?1 (bisphenol A diglycidyl ether) to 6.29 μg mL?1 (diethylhexyl phthalate), while those of detection ranged from 0.068 × 10?3 μg mL?1 (bisphenol A diglycidyl ether) to 1.031 μg mL?1 (diethylhexyl phthalate). To test method suitability, it was applied to real saliva and serum samples of healthy human volunteers and was found to meet the demands of the laboratories handling simple and relatively inexpensive equipment for screening oriented at rapid and reliable contamination assessment of a population.  相似文献   

18.
In this study, we propose a simple, cost-effective, and sensitive high-performance liquid chromatography with fluorescence detection (HPLC-FLD) for the simultaneous determination of seven bisphenols (bisphenol F (BPF), bisphenol E (BPE), bisphenol B (BPB), BADGE (bisphenol A diglycidyl ether), BADGE∙2H2O, BADGE∙H2O, BADGE∙2HCl) in human breast milk samples. The dispersive solid phase extraction (d-SPE) coupled with solid phase extraction (SPE) procedure performed well for the majority of the analytes with recoveries in the range 57–88% and relative standard deviations (RSD%) of less than 9.4%. During the d-SPE stage, no significant matrix effect was observed thanks to the application of different pairs of salts such as zirconium-dioxide-based sorbents (Z-Sep or Z-Sep +) and primary secondary amine (PSA) or QuEChERS Enhanced Matrix Removal-Lipid (EMR-Lipid) and PSA. The method limits of quantification (mLOQs) for all investigated analytes were set at satisfactory low values in the range 171.89–235.11 ng mL−1. Analyte concentrations were determined as the average value from human breast milk matrix samples. The results show that the d-SPE/SPE procedure, especially with the application of EMR-Lipid and PSA, could be used for further bisphenol analyses in human breast milk samples.  相似文献   

19.
Two unknown compounds were previously determined to be potential interferences in liquid chromatography/tandem mass spectrometry (LC/MS/MS) analysis of bisphenol A (BPA) in canned infant formula. Both yielded two identical MS/MS transitions to BPA. The identities of the unknowns were investigated using accurate mass LC/MS, LC/MS/MS, and elemental formula and structures proposed. Exact identities were confirmed through purification or synthesis followed by (1)H and (13)C nuclear magnetic resonance (NMR) experiments, as well as comparisons of one unknown with commercial standards. Comparisons of negative ion electrospray ionization (ESI) MS/MS and accurate mass spectra suggested both unknowns to be structurally identical (to BPA and each other). Positive ion ESI spectra confirmed both were larger molecules, suggesting that in the negative mode they likely fragmented to the deprotonated BPA ion in the source [corrected]. Elemental composition of positive ion accurate mass spectra and NMR analysis concluded the unknowns were oxidized forms of the known epoxy can coating monomer, bisphenol A diglycidyl ether (BADGE). One of the unknowns, 2,2-[bis-4-(2,3-dihydroxypropoxy)phenyl]propane, commonly known as BADGE*2H(2)O, is widely reported as an epoxy-phenolic can coating migrant, but has not been suggested to interfere with the MS/MS analysis of BPA. The other unknown, 2-[4-(2,3-dihydroxypropoxy)phenyl]-2-[4'-hydroxyphenyl]propane, or the oxidized form of bisphenol A monoglycidyl ether (BAMGE*H(2)O), has not been previously reported in food or packaging.  相似文献   

20.
The thermal degradation of the epoxy systems diglycidyl ether of bisphenol A (BADGE n=0)/1, 2 diamine cyclohexane (DCH) and diglycidyl ether of bisphenol A (BADGE n=0)/1, 2 diaminecyclohexane (DCH) containing calcium carbonate filler immersed and not immersed in hydrochloric acid have been studied by thermogravimetric analysis in order to compare their decomposition processes and to determine the reaction mechanism of the degradation processes. The value of the activation energies, necessary for this study, were calculated using various integral and differential methods. Analysis of the results suggests that hydrochloric acid does not affect the decomposition of the epoxy network and that the reaction mechanisms produce sigmoidal-type curves for the systems not immersed in HCl and deceleration curves for the same systems immersed. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号