首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The bis(benzene-o-dithiol) ligand H4-1 reacts with Ti4+ in a self-assembly reaction to give the dinuclear triple-stranded helicate [Ti2(1)3]4- which is the first helicate build exclusively from benzene-o-dithiolato donor groups.  相似文献   

2.
The bis(benzene-o-dithiol) ligands H(4)-1, H(4)-2, and H(4)-3 react with [Ti(OC(2)H(5))(4)] to give dinuclear triple-stranded helicates [Ti(2)L(3)](4)(-) (L = 1(4)(-), 2(4)(-), 3(4)(-)). NMR spectroscopic investigations revealed that the complex anions possess C(3) symmetry in solution. A crystal structure analysis for (PNP)(4)[Ti(2)(2)(3)] ((PNP)(4)[14]) confirmed the C(3) symmetry for the complex anion in the solid state. The complex anion in Li(PNP)(3)[Ti(2)(1)(3)] (Li(PNP)(3)[13]) does not exhibit C(3) symmetry in the solid state due to the formation of polymeric chains of lithium bridged complex anions. Complexes [13](4)(-) and [14](4)(-) were obtained as racemic mixtures of the Delta,Delta and Lambda,Lambda isomers. In contrast to that, complex (PNP)(4)[Ti(2)(3)(3)] ((PNP)(4)[15]) with the enantiomerically pure chiral ligand 3(4)(-) shows a strong Cotton effect in the CD spectrum, indicating that the chirality of the ligands leads to the formation of chiral metal centers. The o-phenylene diamine bridged bis(benzene-o-dithiol) ligand H(4)-4 reacts with Ti(4+) to give the dinuclear double-stranded complex Li(2)[Ti(2)(4)(2)(mu-OCH(3))(2)] containing two bridging methoxy ligands between the metal centers. The crystal structure analysis and the (1)H NMR spectrum of (Ph(4)As)(2)[Ti(2)(4)(2)(mu-OCH(3))(2)] ((Ph(4)As)(2)[(16]) reveal C(2) symmetry for the anion [Ti(2)(4)(2)(mu-OCH(3))(2)](2)(-). For a comparative study the dicatechol ligand H(4)-5, containing the same o-phenylene diamine bridging group as the bis(benzene-o-dithiol) ligands H(4)-4, was prepared and reacted with [TiO(acac)(2)] to give the dinuclear complex anion [Ti(2)(5)(2)(mu-OCH(3))(2)](2)(-). The molecular structure of (PNP)(2)[Ti(2)(5)(2)(mu-OCH(3))(2)] ((PNP)(2)[17]) contains a complex anion which is similar to [16](2)(-), with the exception that strong N-H...O hydrogen bonds are formed in complex anion [17](2)(-), while N-H...S hydrogen bonds are absent in complex anion [16](2)(-).  相似文献   

3.
4.
Zhang Z  Dolphin D 《Inorganic chemistry》2010,49(24):11550-11555
The reaction of an α-free, β,β'-linked bis(dipyrromethene) ligand with Fe(3+) or Co(3+) led to noninterconvertible triple-stranded helicates and mesocates. In the present context, a stable α-free ligand 2 has been developed and complexation of ligands 1 and 2 with diamagnetic Co(3+), Ga(3+), and In(3+) has been studied. The triple-stranded M(2)1(3) (M = Ga, In) and M(2)2(3) (M = Co, Ga, In) complexes were characterized using matrix-assisted laser desorption ionization time-of-flight spectrometry, (1)H NMR and UV-vis spectroscopy, and X-ray crystallography. Again, the (1)H NMR analysis showed that both the triple-stranded helicates and mesocates were generated in this metal-directed assembly. Consistent with our previous finding on coordinatively inert Co(3+) complexes, variable-temperature NMR spectroscopy indicated that the triple-stranded helicate and mesocate of labile In(3+) did not interconvert in solution, either. However, the diastereoselectivity of the M(2)2(3) complexes was found to improve with an increase in the reaction temperature. Taken together, this study complements the coordination chemistry of poly(dipyrromethene) ligands and provides further insight into the formation of helicates versus mesocates.  相似文献   

5.
Reaction of the 1,5-diamidonaphthalene bridged bis(benzene-o-dithiol) ligand H4- with Ti4+ leads to the unexpected formation of a dinuclear meso-complex anion [Ti2(B)3](4-), while the catechol analog H(4-) has been reported to yield the tetrahedral [M4(A)6](8-) cluster.  相似文献   

6.
Dicatechol ligands 3b-g-H4 are simply prepared by imine formation of 2,3-dihydroxybenzaldehyde 2 with a series of different diamines 1b-g . An X-ray structural analysis was obtained for the butyl-bridged compound 3e-H4, showing an intramolecular proton transfer and the formation of a chinoidic "keto-amine" structure. The dicatechol derivatives 3b-g-H4 form dinuclear triple-stranded helicates M4[(3)3Ti2] with titanium(IV) ions in the presence of alkali-metal carbonate. For the phenyl- and the trans-1,4-cyclohexyl-bridged complexes, K4[(3b)3Ti2] and Na4[(3f)3Ti2], X-ray structures were obtained.  相似文献   

7.
The protonation and iron(II) coordination properties of a bis(2,2'-bipyridine) ligand L were investigated in methanol. The protonated forms showed allosteric effects due to the flexibility of the strand. Speciation studies of the corresponding ferrous complexes were carried out as a function of pH and iron(II) concentrations. A combination of electrospray mass spectroscopy, potentiometry, and spectrophotometry allowed the determination in solution of three ferrous complexes, one mononuclear (L2Fe2+) and two dinuclear (L2Fe2(4+) and L3Fe2(4+)) species. Their structure was deduced from the metal spin state and confirmed by 1H NMR measurements and molecular modeling. The dissociation process of the triple-stranded diferrous helicate L3Fe2(4+) by OH- revealed two rate-limiting steps. The former leads to the formation of a monoferrous triple-stranded compound via a classical mechanism, which involves hydroxy-ferrous complexes. A similar process was observed in the latter step for the release of the ferrous cation from the mononuclear intermediate. Taking into account the structural, thermodynamic, and kinetic features provided by the present study, we could propose a self-assembling mechanism of the triple-stranded diferrous helicate.  相似文献   

8.
Two dinuclear triple-stranded helicates [Ln(2)L(3)](3+) (Ln = Dy and Tb) obtained via self-assembly from the ligand HL (2,6-diformyl-4-methylphenol di(benzoylhydrazone)) and lanthanide perchlorate have been synthesized and characterized. The crystal structural analysis demonstrates that three ligand strands wrap around a pseudo-threefold axis defined by the two metal ions, leading to a 'meso'-relation between the right- (Δ) and left-hand (Λ) configurations of [Ln(2)L(3)](3+) in the crystal. Each Ln(III) ion is coordinated by nine donor atoms in a distorted tricapped trigonal-prismatic arrangement. Alternating current (ac) susceptibility measurements of [Dy(2)L(3)](3+) reveal a frequency-dependent out-of-phase signal under a 700 Oe dc field, indicating the onset of the slow relaxation of magnetization with a roughly estimated activation energy of ~5 K and τ(0) of 10(-7) s.  相似文献   

9.
Kiehne U  LUtzen A 《Organic letters》2007,9(26):5333-5336
Difunctionalization of D-isomannide yielded a bis(bipyridine) ligand bearing four stereogenic centers whose diastereoselective self-assembly to enantiomerically pure dinuclear helicates upon coordination to different metal ions was investigated by NMR and CD spectroscopic as well as ESI mass spectrometric methods.  相似文献   

10.
A series of bisimine-bridged dicatechol ligands 2-H(4)-5-H(4) were synthesized and were used to prepare triple-stranded dinuclear helicate-type complexes with a length of up to more than 2 nm. X-ray structural analyses of Na(4)[(2)(3)V(2)], Na(4)[(3)(3)Ti(2)], Na(4)[(4)(3)Ti(2)], and Na(4)[(5)(3)Ti(2)], as well as temperature-dependent NMR investigations of Na(4)[(4)(3)Ti(2)] and Na(4)[(5)(3)Ti(2)] show that, in the case of the rigid linear ligands 2 and 3, and of the ligand 5, which possesses C(2h) symmetry in its idealized structure, homochiral helicates are diastereoselectively formed. Ligand 4, on the other hand, with idealized C(2v) symmetry, leads with surprisingly high selectivity to the formation of the heterochiral meso-helicate. This is attributed to the ability of ligand 4 to adopt a less-restricted conformation in the meso compound than in the helical complex. NMR investigations indicate that both complex units of Na(4)[(4)(3)Ti(2)] invert (LambdaDelta-->DeltaLambda) simultaneously, while in the case of Na(4)[(5)(3)Ti(2)] a stepwise racemization proceeds.  相似文献   

11.
A bis-terdentate segmental ligand has been designed which self-assembles with lanthanide ions of different size to yield heterodimetallic triple-stranded helicates.  相似文献   

12.
As a part of a broader study directed towards helical coordination compounds with benzenedithiolate donors, we have synthesized the bis(benzenedithiol) ligands 1,2-bis(2,3-dimercaptobenzamido)ethane (H(4)-1) and 1,2-bis(2,3-dimercaptophenyl)ethane (H(4)-2). Both ligands form dinuclear complexes with Ni(II), Ni(III) and, after air-oxidation, Co(III) ions under equilibrium conditions. Complexes (NEt(4))(4)[Ni(II)(2)(1)(2)] (11 b), (NEt(4))(2)[Ni(III)(2)(1)(2)] (13), and Na(4)[Ni(II)(2)(2)(2)] (14) were characterized by X-ray diffraction. In all complexes, two square-planar [Ni(S(2)C(6)H(3)R)(2)] units are linked in a double-stranded fashion by the carbon backbone and they assume a coplanar arrangement in a stair-like manner. Cyclic voltammetric investigations show a strong dependence of the redox potential on the type of the ligand. The substitution of 1(4-) for 2(4-) on nickel (-785 mV for 11 b versus -1130 mV for 14, relative to ferrocene) affects the redox potential to a similar degree as the substitution of nickel for cobalt (-1160 mV for [Co(2)(1)(2)](2-)/[Co(2)(1)(2)](4-), relative to ferrocene). The redox waves display a markedly less reversible behavior for complexes with the shorter bridged ligand 2(4-) compared to those of 1(4-).  相似文献   

13.
Two unsymmetrical ditopic hexadentate ligands designed for the simultaneous recognition of two different trivalent lanthanide ions have been synthesized, L(AB2) and L(AB3), where A represents a tridentate benzimidazole-pyridine-benzimidazole coordination unit, B2 a diethylamine-substituted benzimidazole-pyridine-carboxamide one, and B3 a chlorine-substituted benzimidazole-pyridine-carboxamide moiety. Under stoichiometric 2:3 (Ln/L) conditions, these ligands self-assemble with lanthanide ions to yield triple-stranded bimetallic helicates. The crystal structures of four helicates with L(AB3) of composition [LnLn'(L(AB3))3](ClO4)6.solv (CeCe, PrPr, PrLu, NdLu) show the metal ions embedded into a helical structure with a pitch of about 13.2-13.4 A. The metal ions lie at a distance of 9.1-9.2 A and are nine-coordinated by the three ligand strands, which are oriented in a HHH (head-head-head) fashion, where all ligand strands are oriented in the same direction. In the presence of a pair of different lanthanide ions in acetonitrile solution, the ligand L(AB3) shows selectivity and gives high yields of heterobimetallic complexes. L(AB2) displays less selectivity, and this is shown to be directly related to the tendency of this ligand to form high yields of HHT (head-head-tail) isomer. A fine-tuning of the HHH left arrow over right arrow HHT equilibrium and of the selectivity for heteropairs of Ln(III) ions is therefore at hand.  相似文献   

14.
The diastereoselectivity of the self-assembly of bis(dipyrromethene) ligands with trivalent metals was improved by introducing gem-dimethyl groups to the linker.  相似文献   

15.
Unsymmetrical substituted bidentate benzimidazol-2-ylpyridine ligands L2 and L3 react with [Ru(dmso)(4)Cl(2)] in ethanol to give statistical 1:3 mixtures of fac-[Ru(Li)(3)](2+) and mer-[Ru(Li)(3)](2+) (i=2, 3; DeltaGtheta(isomerisation)=-2.7 kJ mol(-1)). In more polar solvents (acetonitrile, methanol), the free energy of the facial<=>meridional isomerisation process favours mer-[Ru(Li)(3)](2+), which is the only isomer observed in solution at the equilibrium (DeltaGtheta(isomerisation)< or = -11.4 kJ mol(-1)). Since the latter process takes several days for [Ru(L2)(3)](2+), fac-[Ru(L2)(3)](2+) and mer-[Ru(L2)(3)](2+) have been separated by chromatography, but the 28-fold increase in velocity observed for [Ru(L3)(3)](2+) provides only mer-[Ru(L3)3](ClO(4))2 after chromatography (RuC(60)H(51)N(9)O(8)Cl(2), monoclinic, P2(1)/n, Z=4). The facial isomer can be stabilised when an appended tridentate binding unit, connected at the 5-position of the benzimidazol-2-ylpyridine unit in ligand L1, interacts with nine-coordinate lanthanides(III). The free energy of the facial<=>meridional isomerisation is reversed (DeltaGtheta(isomerisation)> or =11.4 kJ mol(-1)), and the Ru--N bonds are labile enough to allow the quantitative thermodynamic self-assembly of HHH-[RuLu(L1)(3)]5+ within hours ([RuLu(L1)3](CF(3)SO(3))(4.5)Cl(0.5)(CH(3)OH)(2.5): RuLuC(106)H(109)Cl(0.5)N(21)O(19)S(4.5)F(13.5), triclinic, P(-)1, Z=2). Electrochemical and photophysical studies show that the benzimidazol-2-ylpyridine units in L1-L3 display similar pi-acceptor properties to, but stronger pi-donor properties than, those found in 2,2'-bipyridine. This shifts the intraligand pi-->pi* and the MLCT transitions toward lower energies in the pseudo-octahedral [Ru(Li)(3)](2+) (i=2, 3) chromophores. The concomitant short lifetime of the (3)MLCT excited state points to efficient, thermally activated quenching via low-energy Ru-centred d-d states, a limitation which is partially overcome by mechanical coupling in HHH-[RuLu(L1)(3)]5+.  相似文献   

16.
Cerium-based triple-strand helicates Ce-CL(1) and Ce-CL(2) were achieved via self-assembly from malonohydrazone derived bis-tridentate ligands H(2)CL(1) and H(2)CL(2), respectively. Structure analysis of Ce-CL(1) shows that six oxygen atoms of the β-diketone groups on the ligands form a lantern-like cavity inside the helicate. Thus the helicates exhibit crown ether recognition behaviors and could work as luminescent magnesium chemosensors. The restricted geometry constraints of the internal cavities provide high selectivities of the helical probes towards Mg(2+) ion over other alkaline and alkaline-earth ions such as Li(+), Na(+), K(+), Ca(2+) and Ba(2+).  相似文献   

17.
We have investigated the CD spectra of a series of enantiomerically pure heterobimetallic helicates, Lambda,Lambda-[LnCr(1)(3)](6+) (Ln = Eu, Gd, Tb), which contain segmental di-imine ligands. For the mononuclear precursor of these helicates, Lambda-[Cr(1)(3)](3+), a positive exciton couplet was observed around 330 nm, as expected for a tris(di-imine) complex with this absolute configuration. The titration of Ln(III) ions into a solution of this complex leads to the formation of Lambda,Lambda-[LnCr(1)(3)](6+). During this process, the CD signal was observed to invert to give a signal which was negative at lower energies. We investigated the observed changes in the CD spectra using a ZINDO-based computational method which we have previously developed. We were able to show that the exciton coupling of the chromophores coordinated to the Cr and Ln ions give rise to CD signals of opposite phase, despite having the same nominal absolute configuration. Exciton coupling between chromophores located on different metal centers ("internuclear" exciton coupling) is also predicted to have a significant impact on the observed spectrum. We were able to "deconstruct" the observed CD spectra into a set of competing exciton coupling effects and show that the sign of these spectra does not correlate with the absolute configuration of the individual metal centers.  相似文献   

18.
Tetrahedral dibromomanganese(II) complexes having formulas [MnBr2{O?=?PR(NMe2)2}2] (R?=?NMe2 (1); Ph (2)) were isolated and characterized by single crystal X-ray diffraction. [MnBr2{O?=?P(NMe2)3}2] (1) crystallizes in the monoclinic C2/c space group. The asymmetric unit contains one half of the molecule with the Mn(II) atom in a distorted tetrahedral coordination. The intermolecular network of this coordination compound was studied by generating and inspecting its Hirshfeld surface, while the weak intramolecular hydrogen bonds were investigated computationally by AIM analysis in the gas phase and in solution. The Hirshfeld analysis was extended to the related [MnBr2{O?=?PPh(NMe2)2}2] complex (2).  相似文献   

19.
Two new cadmium(II) coordination polymers, {[Cd(L1)(tbta)]·H2O} n (1) and [Cd(L2)(tbta)] n (2) (L1 = 1,4-bis(5,6-dimethylbenzimidazol-1-ylmethyl)benzene, H2tbta = tetrabromoterephthalic acid and L2 = 1,4-bis(2-methylbenzimidazol-1-ylmethyl)benzene) are obtained under hydrothermal conditions and structurally characterized by single crystal X-ray diffraction methods, IR spectroscopy, TGA and elemental analysis. The L1 and L2 ligands differ by subtle variation of substituents at semi-rigid bis(benzimidazole) bakcbones. Complex 1 features a 3D threefold interpenetrating dia array with a 4-connected 66 topology. Complex 2 displays a 2D {44.62} sql/Shubnikov tetragonal plane network. Complexes 1 and 2 possess high thermal stabilities and promising fluorescence behavior in the solid state.  相似文献   

20.
The rationally designed polydentate ligands, L 1 and L 2 , based on the pyridinyl moiety and the hydrazone fragment have been synthesized to coordinate zinc(II) ions. We utilize pyridine as a rigid core connecting two bipyridines as ligand building blocks with a hydrozone linker for the L 1 . The L 2 has a reversed design in which a bipyridine was used as a hinging-available building block of the ligand core, connecting two pyridazine arms with a hydrazone linker. Two novel helical dizinc(II) complexes were obtained by the reaction of L 1 and L 2 with zinc(II) perchlorate in acetonitrile. The structures of both helicates were confirmed by X-ray diffractometry. Single-stranded helicate Zn 2 L 1 contains two zinc ions bridged by an oxygen atom. Except for the L 2 ligand, no other bridging species were found between the two zinc ions in the double-stranded helicate Zn 2 L 2 2 . The self-assembling process of helicate Zn 2 L 1 in solution state was studied by UV–Vis spectrometric titration experiments. The stepwise formation constants imply a slightly positive cooperative behavior for the formation of helicates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号