首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigate to what extent the full Stokes scattering matrix of an ensemble of wavelength-sized particles with complex shapes can be modeled by employing an ensemble of simple model shapes, such as spheres, spheroids, and circular cylinders. We also examine to what extent such a simple-shape particle model can be used to retrieve meaningful shape information about the complex-shaped particle ensemble. More specifically, we compute the Stokes scattering matrix for ensembles of randomly oriented particles having several polyhedral prism geometries of different sizes and shape parameters. These ensembles serve as proxies for size-shape mixtures of particles containing several different shapes of higher geometrical complexity than the simple-shaped model particles we employ. We find that the phase function of the complex-shaped particle ensemble can be accurately modeled with a size distribution of volume-equivalent spheres. The diagonal elements of the scattering matrix are accurately reproduced with a size-shape mixture of spheroids. A model based on circular cylinders accurately fits the full scattering matrix including the off-diagonal elements. However, the modeling results provide us with only a rough estimate of the effective shape parameter of the complex-shaped particle ensemble to be modeled. They do not allow us to infer detailed information about the shape distribution of the complex-shaped particle ensemble.  相似文献   

2.
We study the singular values of the product of two coupled rectangular random matrices as a determinantal point process. Each of the two factors is given by a parameter dependent linear combination of two independent, complex Gaussian random matrices, which is equivalent to a coupling of the two factors via an Itzykson-Zuber term. We prove that the squared singular values of such a product form a biorthogonal ensemble and establish its exact solvability. The parameter dependence allows us to interpolate between the singular value statistics of the Laguerre ensemble and that of the product of two independent complex Ginibre ensembles which are both known. We give exact formulae for the correlation kernel in terms of a complex double contour integral, suitable for the subsequent asymptotic analysis. In particular, we derive a Christoffel–Darboux type formula for the correlation kernel, based on a five term recurrence relation for our biorthogonal functions. It enables us to find its scaling limit at the origin representing a hard edge. The resulting limiting kernel coincides with the universal Meijer G-kernel found by several authors in different ensembles. We show that the central limit theorem holds for the linear statistics of the singular values and give the limiting variance explicitly.  相似文献   

3.
We introduce a new definition of the energy spectrum of a nonstationary ensemble of pulses that reduces to the usual ones in the limit of statistically stationary ensembles of signals and of fully temporarily coherent ensembles.  相似文献   

4.
We study stochastic particle systems with stationary product measures that exhibit a condensation transition due to particle interactions or spatial inhomogeneities. We review previous work on the stationary behaviour and put it in the context of the equivalence of ensembles, providing a general characterization of the condensation transition for homogeneous and inhomogeneous systems in the thermodynamic limit. This leads to strengthened results on weak convergence for subcritical systems, and establishes the equivalence of ensembles for spatially inhomogeneous systems under very general conditions, extending previous results which focused on attractive and finite systems. We use relative entropy techniques which provide simple proofs, making use of general versions of local limit theorems for independent random variables.  相似文献   

5.
《Nuclear Physics B》2005,704(3):407-444
In general or normal random matrix ensembles, the support of eigenvalues of large size matrices is a planar domain (or several domains) with a sharp boundary. This domain evolves under a change of parameters of the potential and of the size of matrices. The boundary of the support of eigenvalues is a real section of a complex curve. Algebro-geometrical properties of this curve encode physical properties of random matrix ensembles. This curve can be treated as a limit of a spectral curve which is canonically defined for models of finite matrices. We interpret the evolution of the eigenvalue distribution as a growth problem, and describe the growth in terms of evolution of the spectral curve. We discuss algebro-geometrical properties of the spectral curve and describe the wave functions (normalized characteristic polynomials) in terms of differentials on the curve. General formulae and emergence of the spectral curve are illustrated by three meaningful examples.  相似文献   

6.
We consider m spinless Bosons distributed over l degenerate single-particle states and interacting through a k-body random interaction with Gaussian probability distribution (the Bosonic embedded k-body ensembles). We address the cases of orthogonal and unitary symmetry in the limit of infinite matrix dimension, attained either as l→∞ or as m→∞. We derive an eigenvalue expansion for the second moment of the many-body matrix elements of these ensembles. Using properties of this expansion, the supersymmetry technique, and the binary correlation method, we show that in the limit l→∞ the ensembles have nearly the same spectral properties as the corresponding Fermionic embedded ensembles. Novel features specific for Bosons arise in the dense limit defined as m→∞ with both k and l fixed. Here we show that the ensemble is not ergodic and that the spectral fluctuations are not of Wigner-Dyson type. We present numerical results for the dense limit using both ensemble unfolding and spectral unfolding. These differ strongly, demonstrating the lack of ergodicity of the ensemble. Spectral unfolding shows a strong tendency toward picket-fence-type spectra. Certain eigenfunctions of individual realizations of the ensemble display Fock-space localization.  相似文献   

7.
We apply a probabilistic approach to study the computational complexity of analog computers which solve linear programming problems. We numerically analyze various ensembles of linear programming problems and obtain, for each of these ensembles, the probability distribution functions of certain quantities which measure the computational complexity, known as the convergence rate, the barrier and the computation time. We find that in the limit of very large problems these probability distributions are universal scaling functions. In other words, the probability distribution function for each of these three quantities becomes, in the limit of large problem size, a function of a single scaling variable, which is a certain composition of the quantity in question and the size of the system. Moreover, various ensembles studied seem to lead essentially to the same scaling functions, which depend only on the variance of the ensemble. These results extend analytical and numerical results obtained recently for the Gaussian ensemble, and support the conjecture that these scaling functions are universal.  相似文献   

8.
We prove that the level spacing distribution at the middle of the spectrum of some one-parameter family of random matrix ensembles has the universal form coinciding with that previously known for several special ensembles. We also discuss some related topics of the random matrix theory.  相似文献   

9.
10.
The moduli of the eigenvalues at the edge of Ginibre's complex and quaternion Gaussian random matrix ensembles are shown to respond to a limit theorem identical in nature to that for independent identically distributed sequences. This is a companion work to ref. 15 in which the limit law for the (scaled) spectral radius of these ensembles was identified.  相似文献   

11.
We present experimental results to quantify and optimize the surface‐enhanced Raman scattering (SERS) activity of naturally grown silver nanoparticles. Ag nanoparticle ensembles with mean equivalent radii ranging from 10.6 to 20.3 nm were prepared under ultrahigh vacuum conditions by Volmer–Weber growth on quartz plates. A tuning of the localized surface plasmon polariton resonance wavelength from 453 to 548 nm was performed by varying the morphology of the silver nanoparticles. The dependence of the SERS activity on the plasmon resonance wavelength was investigated with a Raman set‐up containing a microsystem light source with an emission line at 488 nm. Shifted excitation Raman difference spectroscopy was applied to remove the fluorescence‐based background from the SERS spectra of pyrene in water using two slightly different emission wavelengths (487.61 and 487.91 nm) of the microsystem light source. We demonstrate that the Raman activities for all SERS substrates are available in the nanomolar range in a water sample. However, the Raman activity crucially depends on the plasmon resonance wavelength of the nanoparticle ensembles. Although for an on‐resonance ensemble the limit of detection for pyrene in water is very low and was estimated to be 2 nmol/L, it increases rapidly to several tens of nanomol for slightly off‐resonance ensembles. Hence, the highest SERS activity was obtained with a nanoparticle ensemble exhibiting a plasmon resonance wavelength at 491 nm, which almost coincides with the excitation wavelengths. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
We construct dynamics of two-dimensional Young diagrams, which are naturally associated with their grandcanonical ensembles, by allowing the creation and annihilation of unit squares located at the boundary of the diagrams. The grandcanonical ensembles, which were introduced by Vershik [17], are uniform measures under conditioning on their size (or equivalently, area). We then show that, as the averaged size of the diagrams diverges, the corresponding height variable converges to a solution of a certain non-linear partial differential equation under a proper hydrodynamic scaling. Furthermore, the stationary solution of the limit equation is identified with the so-called Vershik curve. We discuss both uniform and restricted uniform statistics for the Young diagrams.  相似文献   

13.
Systems of globally coupled logistic maps (GCLM) can display complex collective behaviour characterized by the formation of synchronous clusters. In the dynamical clustering regime, such systems possess a large number of coexisting attractors and might be viewed as dynamical glasses. Glass properties of GCLM in the thermodynamical limit of large system sizes N are investigated. Replicas, representing orbits that start from various initial conditions, are introduced and distributions of their overlaps are numerically determined. We show that for fixed-field ensembles of initial conditions all attractors of the system become identical in the thermodynamical limit up to variations of order 1/, and thus replica symmetry is recovered for N→∞. In contrast to this, when fluctuating-field ensembles of initial conditions are chosen, replica symmetry remains broken in the thermodynamical limit. Received 9 July 2001  相似文献   

14.
Transitive correlations of eigenvalues for random matrix ensembles intermediate between real symmetric and hermitian, self-dual quaternion and hermitian, and antisymmetric and hermitian are studied. Expressions for exact n-point correlation functions are obtained for random matrix ensembles related to general orthogonal polynomials. The asymptotic formulas in the limit of large matrix dimension are evaluated at the spectrum edges for the ensembles related to the Legendre polynomials. The results interpolate known asymptotic formulas for random matrix eigenvalues.  相似文献   

15.
V Potbhare  V K B Kota 《Pramana》1978,11(2):209-221
We obtain an expression for the ensemble-averaged moments inm-particle space of 2-body random Hamiltonians with same non-zero mean for the matrix elements, in the limit ofN → ∞,m ≫ 2. The eigenvalue density function can then be immediately obtained in terms of the eigenvalue density (a Gaussian whenm ≫ 2) for zero mean ensembles. The results of Monte-Carlo calculations for iso-scalar rotationally invariant 2-body ensembles have also been given.  相似文献   

16.
We consider two families of non-Hermitian Gaussian random matrices, namely the elliptic Ginibre ensembles of asymmetric $N$ -by- $N$ matrices with Dyson index $\beta =1$ (real elements) and with $\beta =4$ (quaternion-real elements). Both ensembles have already been solved for finite $N$ using the method of skew-orthogonal polynomials, given for these particular ensembles in terms of Hermite polynomials in the complex plane. In this paper we investigate the microscopic weakly non-Hermitian large- $N$ limit of each ensemble in the vicinity of the largest or smallest real eigenvalue. Specifically, we derive the limiting matrix-kernels for each case, from which all the eigenvalue correlation functions can be determined. We call these new kernels the “interpolating” Airy kernels, since we can recover—as opposing limiting cases—not only the well-known Airy kernels for the Hermitian ensembles, but also the complementary error function and Poisson kernels for the maximally non-Hermitian ensembles at the edge of the spectrum. Together with the known interpolating Airy kernel for $\beta =2$ , which we rederive here as well, this completes the analysis of all three elliptic Ginibre ensembles in the microscopic scaling limit at the spectral edge.  相似文献   

17.
We investigate scale invariant measures over multiple variables for scalar field theories by imitating Wiener’s construction of the measure on the space of functions of one variable. We assign random fields values on the vertices of simple geometric shapes (triangles, squares, tetrahedra) which are subdivided into a finite number of similar shapes. We find several Gaussian measures with anomalous scaling associated with these field variables. A non-Gaussian fixed point arises from the Ising model on a fractal. In the continuum limit, we construct correlation functions that vary as a power of the distance. It is either a positive power (analogous to the Wiener process) or a negative power depending on the subdivision scheme used; however it is an irrational number for all the examples. This suggests that in the continuum limits it corresponds to quantum field theories (random fields) on spaces of fractional dimension.  相似文献   

18.
We show that the ground states of the three-dimensional XXZ Heisenberg ferromagnet with a 111 interface have excitations localized in a subvolume of linear size R with energies bounded by O(1/R2). As part of the proof we show the equivalence of ensembles for the 111 interface states in the following sense: In the thermodynamic limit the states with fixed magnetization yield the same expectation values for gauge invariant local observables as a suitable grand canonical state with fluctuating magnetization. Here, gauge invariant means commuting with the total third component of the spin, which is a conserved quantity of the Hamiltonian. As a corollary of equivalence of ensembles we also prove the convergence of the thermodynamic limit of sequences of canonical states (i.e., with fixed magnetization).  相似文献   

19.
Gravitational instabilities of isothermal spheres are studied in the presence of a positive or negative cosmological constant, in the Newtonian limit. In gravity, the statistical ensembles are not equivalent. We perform the analysis both in the microcanonical and the canonical ensembles, for which the corresponding instabilities are known as ‘gravothermal catastrophe’ and ‘isothermal collapse’, respectively. In the microcanonical ensemble, no equilibria can be found for radii larger than a critical value, which is increasing with increasing cosmological constant. In contrast, in the canonical ensemble, no equilibria can be found for radii smaller than a critical value, which is decreasing with increasing cosmological constant. For a positive cosmological constant, characteristic reentrant behavior is observed.  相似文献   

20.
《Nuclear Physics B》1995,443(3):433-443
We calculate the cross-correlation function between the eigenvalues of two random hermitian matrices taken from separate gaussian ensembles. In the limit of large matrices the correlation, when suitably smoothed, reproduces a previous result obtained by diagrammatic methods. Unlike previous results, however, this unsmoothed correlation function may be studied at short distances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号