首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Frequency spectra of the complex permittivity for pyridine–amide binary mixtures have been determined over the frequency range 10 MHz to 10 GHz, at 5, 15, 25, and 40°C, using the time–domain reflectometry method, for 11 compositions of each pyridine–amide system, e.g., formamide, N-methylformamide, and N,N-dimethylformamide. The relaxation in these systems can be described by a single relaxation time using the Debye model. The static dielectric constant, relaxation time, the corresponding excess dielectric properties, Kirkwood correlation factor, and molar activation energy of the mixtures have been determined. The excess permittivity is found to be positive in the amide-rich region and negative in the pyridine-rich region. The excess inverse relaxation time is negative, except in the pyridine-rich region. The static dielectric constants for the mixtures have been fitted with the modified Bruggeman model. The temperature-dependent relaxation times show the expected Arrhenius behavior.  相似文献   

2.
The complex dielectric permittivity, ionic conductivity, electric modulus and impedance spectra of the dipolar molecules formamide (FA), 2-aminoethanol (AE) and their binary mixtures were investigated in the frequency range from 20 Hz to 1 MHz at 303.15 K. Debye-type distributions of the frequency dependent electric modulus and complex impedance were found, corresponding to an ionic conduction relaxation process in the upper frequency regime of the spectra, whereas a spike in the impedance spectra at low frequencies confirms the contribution of an electrode polarization (EP) relaxation process induced by ionic conduction. Due to the high static permittivity of FA, its ionic conductivity was found more than one order of magnitude higher than that of the AE, which is also shown by the comparative values of their EP and ionic conductivity relaxation times. The dependences of dc ionic conductivity values of the binary mixtures on their relaxation times and static permittivity were explored. The concentration dependent static permittivity and the relaxation times led us to infer the formation of a 1:1 H-bonded stable complex between FA and AE molecules with reduction in the number of effective parallel-aligned dipoles.  相似文献   

3.
The complex dielectric permittivity of aqueous solutions of tetrahydrofuran and dimethylformamide in wide ranges of temperature (220–300 K) and pressure (0.1–12 MPa) is studied by means of molecular dynamics. The autocorrelation functions of the dipole moments of molecules are calculated. Dielectric permittivity spectra are obtained. The dielectric relaxation times are determined as functions of the tetrahydrofuran and dimethylformamide concentrations in the indicated binary mixtures. The dielectric relaxation frequency shifts toward low frequencies in the range of tetrahydrofuran and dimethylformamide concentrations x ≤ 0.5 molar fraction, due to the formation of heteromolecular structures with hydrogen bonds. This is confirmed by the negative values of the excess dielectric permittivities of binary solutions at x ~ 0.3–0.4 molar fraction.  相似文献   

4.
Frequency spectra of the complex permittivity for 1,2-dichloroethane–alcohol binary mixtures have been determined over the frequency range 10 MHz to 20 GHz at 15, 25, 35, and 45°C, using the time-domain reflectometry (TDR) technique, for 11 compositions of each 1,2 dichloroethane–alcohol system. The alcohols used in the study were methanol, ethanol, and 1-propanol. The relaxation in these systems can be described by a single relaxation time using the Debye model. The static dielectric constant, relaxation time, the corresponding excess dielectric properties, Kirkwood correlation factor, and Bruggeman factor of the mixtures have been determined. The static dielectric constants for the mixtures have been fitted with the modified Bruggeman model.  相似文献   

5.
ABSTRACT

The densities and relative permittivities of binary mixtures of N,N-dimethylacetamide with 2-methoxyethanol, 2-ethoxyethanol, 2-propoxyethanol and 2-butoxyethanol have been measured as a function of composition, at T = 298.15 K. From the experimental data the excess molar volume (VE) from a mole fraction and the excess relative permittivity (εE) from a volume fraction average have been calculated. The results are discussed in terms of intermolecular interactions and structure of studied binary mixtures.  相似文献   

6.
The complex permittivity of glycine in water mixture for various temperatures and concentrations have been measured as a function of frequency between 10?MHz and 30?GHz using time domain reflectometry technique. Dielectric parameters, i.e. static dielectric constant and relaxation time were obtained from the complex permittivity spectra using nonlinear least square fit method. The dielectric relaxation parameter increases with an increase in molar concentration of glycine due to the formation of hydrogen bond groups by glycine molecule in an aqueous solution medium. The activation entropy, activation enthalpy and Kirkwood correlation factor have also been determined for glycine–water mixtures.  相似文献   

7.
Molecular interactions between the polar systems N-methyl aniline and alcohols (propan-1-ol/propan-2-ol) for various mole fractions at different temperatures are studied by determining the dielectric permittivity using LF impedance analyzer, Microwave bench and Abbe’s refractometer in radio, microwave and optic frequency regions respectively. The dipole moment, excess dipole moment, excess Helmholtz energy, excess permittivity, excess inverse relaxation time and excess thermodynamic values are calculated using experimental results. The optimized geometry, harmonic vibrational wave numbers and dipole moments of pure and equimolar binary mixtures have been calculated theoretically from the ab initio Hartree–Fock (HF) and Density Functional Theory (DFT – B3LYP) methods with 6-31+G1 and 6-311+G7 basis sets using Spartan 08 modelling software. Conformational analysis of the formation of hydrogen bond in the equimolar binary mixture systems of N-methyl aniline and alcohols (propan-1-ol/propan-2-ol) is supported by experimental FT-IR spectra. The calculated wave numbers and dipole moments agree well with the experimental values. Further, the correlations among the parameters are discussed in detail.  相似文献   

8.
《Fluid Phase Equilibria》2002,201(1):107-118
The dielectric properties of various organic solvents and binary solvent mixtures at different temperatures over the frequency range of 10 MHz–20 GHz, are investigated using the time domain reflectometry technique, at various temperatures from 15 to 45 °C. These solvent mixtures—dimethylacetamide–2-nitrotoluene and dimethylsulphoxide–2-nitrotoluene as well as pure solvents display a Debye type dispersion. Their frequency-dependent dielectric properties can be summarized by the three parameters in the Debye equation: a static permittivity, permittivity at high frequency and a dielectric relaxation time constant. The free energy of activation for dipolar relaxation process and the Kirkwood correlation factor were determined using these fitting parameters, for these solvent systems at various temperatures. By using these dielectric parameters, the excess permittivity and excess inverse relaxation time is obtained. The static permittivity increases with increase in volume percentage of 2-nitrotoluene in dimethylacetamide as well as dimethylsulphoxide whereas the relaxation time decreases for both the systems.  相似文献   

9.
By the use of time domain reflectometry method, dielectric measurements were carried out on dimethylformamide‐2‐nitrotoluene solvent mixtures in the frequency range 10 MHz‐20 GHz, at various temperatures from 15 °C to 45 °C. These solvent mixtures as well as pure solvents display a Debye type dispersion. Their frequency dependent dielectric properties can be summarized by the three parameters in the Debye equation: a static permittivity, permittivity at high frequency and a dielectric relaxation time constant. The free energy of activation for dipolar relaxation process and the Kirkwood correlation factor were determined using these fitting parameters for these solvent mixtures at various concentrations and temperatures. By using these dielectric parameters, the excess permittivity and excess inverse relaxation time is obtained. The excess permittivity is found to be positive for all concentrations and temperatures whereas the excess inverse relaxation time is negative.  相似文献   

10.
The complex permittivity for chlorobenzene–alcohol binary mixtures have been determined over the frequency range of 10 MHz to 20 GHz, at 15, 25, 35, and 45°C, using the time-domain reflectometry (TDR) method for 11 concentrations of each chlorobenzene–alcohol system. The alcohols used were methanol, ethanol, and 1-propanol. The values of static dielectric constant, relaxation time, the corresponding excess properties, the Redlich–Kister coefficients up to the third order, the Kirkwood correlation factor, and thermodynamic parameters of the mixtures have been determined. The excess permittivity is found to be negative for chlorobenzene–methanol and chlorobenzene–ethanol, whereas it is positive in the 1-propanol rich region. The excess inverse relaxation time is negative for all the systems studied here. The Kirkwood effective correlation factor increases with an increasing in the molecular size of the alcohol, but decreases with increasing temperature.  相似文献   

11.
Results of the dielectric studies carried out on the binary mixture of n-butyric and caprylic acids with 1,4-dioxane over the entire composition range and at temperatures 303 K, 308 K, 313 K and 318 K, and FTIR, UV–vis and 13C NMR spectral studies are presented in this paper. The excess permittivity and excess free energy were fitted with the Redlich–Kister polynomial. The variation of Kirkwood correlation factors, excess permittivity and excess free energy of mixing with the concentration and temperature has been investigated in view of understanding the ordering of dipoles of solute and solvent molecules. The FTIR, UV–vis and 13C NMR spectral analysis reveals the formation of complex between solute and solvent molecules. The parallel alignment of electric dipoles of the complex predicted by dielectric studies is well supported by UV–vis spectral analysis. The structure of the complex molecule present in the clusters has been deduced.  相似文献   

12.
The refraction, dielectric, viscosity, density, data of the binary mixtures of N,N-dimethylacetamide (DMA) with n-butanol at 308.15 and 313.15 K. The measured parameters used to obtain derived properties like Bruggeman factor, molar refraction and excess static dielectric constant, excess inverse relaxation time, excess molar volume and excess viscosity, excess molar refraction. The variation in magnitude with composition and temperature of these quantities has been used to discuss the type, strength and nature of binary interactions. Results confirm that there are strong hydrogen-bond interactions between unlike molecules of DMA+ n-butanol mixtures and that 1: 1 complexes are formed and strength of intermolecular interaction increases with temperature.  相似文献   

13.
Complex reflection coefficients for 2-ethoxyethanol–dimethylformamide (DMF), ethanol–DMF, and 1-propanol–DMF mixtures at several temperatures from 20 to 50° and the frequency range 10 MHz to 10 GHz were determined by time-domain spectroscopy in reflection mode. Fourier transforms and least-squares fitting were used to obtain complex permittivity, static dielectric constant, and relaxation time. The excess dielectric parameters, Kirkwood correlation factors, and thermodynamic properties for the binary mixtures were also determined. The static dielectric constant for the mixtures was fitted well with the modified Bruggeman model.  相似文献   

14.
Using time domain reflectometry (TDR), dielectric relaxation studies were carded out on binary mixtures of amides (N-methylformamide (NMF) and N,N-dimethylformamide (DMF)) with alcohols (1-butanol, 1-pentanol, 1- hexanol, 1-heptanol, 1-octanol, and 1-decanol) for various concentrations over the frequency range from 10 MHz to 10 GHz at 303 K. The Kirkwood correlation factor and excess dielectric constant properties were determined and discussed to yield information on the molecular interactions of the systems. The relaxation time varied with the chain length of alcohols and substituted amides were noticed. The Bruggeman plot shows a deviation from linearity. This deviation was attributed to some sort of molecular interaction which may take place between the alcohols and substituted amides. The excess static permittivity and excess inverse relaxation time values varied from negative to positive for all the systems indicating that the solute-solvent interaction existed between alcohols and substituted amides for all the dynamics of the mixture.  相似文献   

15.
Using time domain reflectometry (TDR),dielectric relaxation studies were carried out on binary mixtures of amides (N-methylformamide (NMF) and N,N-dimethylformamide (DMF)) with alcohols (1-butanol,1-pentanol,1-hexanol,1-heptanol,1-octanol,and 1-decanol) for various concentrations over the frequency range from 10 MHz to 10 GHz at 303 K. The Kirkwood correlation factor and excess dielectric constant properties were determined and discussed to yield information on the molecular interactions of the systems. The relaxation time varied with the chain length of alcohols and substituted amides were noticed. The Bruggeman plot shows a deviation from linearity. This deviation was attributed to some sort of molecular interaction which may take place between the alcohols and substituted amides. The excess static permittivity and excess inverse relaxation time values varied from negative to positive for all the systems indicating that the solute-solvent interaction existed between alcohols and substituted amides for all the dynamics of the mixture.  相似文献   

16.
The complex permittivity spectra of tripropylene glycol and water solutions have been obtained by time domain reflectometry (TDR) technique in the frequency range from 10 MHz to 30 GHz and the temperature range 20°C–05°C. The dielectric relaxation parameters such as static dielectric constant and relaxation time were obtained by using the non-linear least square fit method. The intermolecular hydrogen bonding of tripropylene glycol–water has been discussed using the Kirkwood correlation factor and thermodynamic parameters. The activation energy decreases with increase in water content in the mixture as expected in the Arrhenius behaviour. The dielectric constant for mixtures has been fitted to the Bruggeman mixture formula in the non-linear case.  相似文献   

17.
Using time-domain reflectometry (TDR) technique, we have measured the complex permittivity of tertiary butyl alcohol (TBA)–water mixtures in the frequency range of 10 MHz–30GHz, at temperatures 15°C, 20°C and 25°C. The complex permittivity of TBA–water mixture shows Debye-type behaviour. The dielectric parameters such as dielectric constant and relaxation time were obtained from the complex permittivity spectra. The Kirkwood correlation factor and Bruggeman factor have also been determined to investigate inter- and intramolecular interaction among associating liquids.  相似文献   

18.
The present paper reports static dielectric constants, densities, viscosities, and refractive indices of the binary mixtures of ethanol with DMSO measured at 303 K, 308 K, 313 K. These measured parameters are used to obtain the derived properties, such as the Bruggeman factor, the molar polarization, the excess molar volume, the excess viscosity, the excess static dielectric constant, and the excess molar polarization. The variation in magnitudes of these quantities with composition and temperature is used to discuss the type, strength, and nature of binary interactions. The excess parameters are fitted to the Redlich Kister (R-K) fit equation. The evaluated values of the excess dielectric constant and the excess molar polarization infer that deviations of their mixture values occur from the mole-fraction mixture law. The results confirm that there are dipole-dipole interactions between unlike molecules of ethanol+DMSO mixtures and that 1:1 complexes are formed. The excess static dielectric constant indicates that there is a decrease in the total number of parallel aligned effective dipoles that contribute to the mixture dielectric polarization. It is observed that the excess molar volume becomes more and more positive with the corresponding increase in the temperature. This observation certainly leads to the inference that the intermolecular interaction strength decreases with the temperature.  相似文献   

19.
The relative static permittivity at 1 MHz and high frequency limit permittivity at wavelength of sodium-D line of the binary mixtures of ethanolamine (2-aminoethanol) with alcohols (ethyl alcohol, ethylene glycol and glycerol) and amides (formamide, N,N-dimethylformamide and N,N-dimethylacetamide) have been investigated over the entire concentration range at 30 °C. The excess permittivity and Kirkwood correlation factor of the binary mixtures were determined to explore the hydrogen-bonded hetero-molecular interactions and their dependence on the number of hydroxyl groups of alcohols molecules and the extent of substitution in amides molecules. Results confirm that ethanolamine form weak H-bond interactions with alcohols, N,N-dimethylformamide and N,N-dimethylacetamide, but the dipolar alignments in these mixtures vary with number of hydroxyl group of alcohols and their molecular size. Comparatively strong H-bond interactions were found between ethanolamine and formamide molecules with reduce in number of parallel aligned effective dipoles.  相似文献   

20.
In this work we used the experimental result for calculating the thermal expansion coefficients α, and their excess values α E , and isothermal coefficient of pressure excess molar enthalpy and comparison the obtain results with Flory theory of liquid mixtures for the binary mixtures {methanol, ethanol, 1-propanol and 2-butanol-chloroform} at 288.15, 293.15, 298.15, 303.15, 308.15, 313.15, 318.15, and 323.15 K. The excess thermal expansion coefficients α E and the isothermal coefficient of pressure excess molar enthalpy ((∂H mE/∂P) T,x for binary mixtures of {methanol and ethanol + chloroform} are S-shaped and for binary mixtures of {1-propanol and 2-butanol + chloroform} are positive over the mole fraction. The isothermal coefficient of pressure excess molar enthalpy (∂H mE/∂P) T,x , are negative over the mole fraction range for binary mixture of {1-propanol and 2-butanol + chloroform}. The calculated values by using the Flory theory of liquid mixtures show a good agreement between the theory and experimental.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号