首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
We investigate the decays of \(\bar{B}^0_s\), \(\bar{B}^0\) and \(B^-\) into \(\eta _c\) plus a scalar or vector meson in a theoretical framework by taking into account the dominant process for the weak decay of \(\bar{B}\) meson into \(\eta _c\) and a \(q\bar{q}\) pair. After hadronization of this \(q\bar{q}\) component into pairs of pseudoscalar mesons we obtain certain weights for the pseudoscalar meson-pseudoscalar meson components. In addition, the \(\bar{B}^0\) and \(\bar{B}^0_s\) decays into \(\eta _c\) and \(\rho ^0\), \(K^*\) are evaluated and compared to the \(\eta _c\) and \(\phi \) production. The calculation is based on the postulation that the scalar mesons \(f_0(500)\), \(f_0(980)\) and \(a_0(980)\) are dynamically generated states from the pseudoscalar meson-pseudoscalar meson interactions in S-wave. Up to a global normalization factor, the \(\pi \pi \), \(K \bar{K}\) and \(\pi \eta \) invariant mass distributions for the decays of \(\bar{B}^0_s \rightarrow \eta _c \pi ^+ \pi ^-\), \(\bar{B}^0_s \rightarrow \eta _c K^+ K^-\), \(\bar{B}^0 \rightarrow \eta _c \pi ^+ \pi ^-\), \(\bar{B}^0 \rightarrow \eta _c K^+ K^-\), \(\bar{B}^0 \rightarrow \eta _c \pi ^0 \eta \), \(B^- \rightarrow \eta _c K^0 K^-\) and \(B^- \rightarrow \eta _c \pi ^- \eta \) are predicted. Comparison is made with the limited experimental information available and other theoretical calcualtions. Further comparison of these results with coming LHCb measurements will be very valuable to make progress in our understanding of the nature of the low lying scalar mesons, \(f_0(500), f_0(980)\) and \(a_0(980)\).  相似文献   

2.
In the aligned two-Higgs-doublet model, we perform a complete one-loop computation of the short-distance Wilson coefficients \(C_{7,9,10}^{(\prime )}\), which are the most relevant ones for \(b\rightarrow s\ell ^+\ell ^-\) transitions. It is found that, when the model parameter \(\left| \varsigma _{u}\right| \) is much smaller than \(\left| \varsigma _{d}\right| \), the charged scalar contributes mainly to chirality-flipped \(C_{9,10}^\prime \), with the corresponding effects being proportional to \(\left| \varsigma _{d}\right| ^2\). Numerically, the charged-scalar effects fit into two categories: (A) \(C_{7,9,10}^\mathrm {H^\pm }\) are sizable, but \(C_{9,10}^{\prime \mathrm {H^\pm }}\simeq 0\), corresponding to the (large \(\left| \varsigma _{u}\right| \), small \(\left| \varsigma _{d}\right| \)) region; (B) \(C_7^\mathrm {H^\pm }\) and \(C_{9,10}^{\prime \mathrm {H^\pm }}\) are sizable, but \(C_{9,10}^\mathrm {H^\pm }\simeq 0\), corresponding to the (small \(\left| \varsigma _{u}\right| \), large \(\left| \varsigma _{d}\right| \)) region. Taking into account phenomenological constraints from the inclusive radiative decay \(B\rightarrow X_{s}{\gamma }\), as well as the latest model-independent global analysis of \(b\rightarrow s\ell ^+\ell ^-\) data, we obtain the much restricted parameter space of the model. We then study the impact of the allowed model parameters on the angular observables \(P_2\) and \(P_5'\) of \(B^0\rightarrow K^{*0}\mu ^+\mu ^-\) decay, and we find that \(P_5'\) could be increased significantly to be consistent with the experimental data in case B.  相似文献   

3.
We discuss the determination of the CKM angle \(\alpha \) using the non-leptonic two-body decays \(B\rightarrow \pi \pi \), \(B\rightarrow \rho \rho \) and \(B\rightarrow \rho \pi \) using the latest data available. We illustrate the methods used in each case and extract the corresponding value of \(\alpha \). Combining all these elements, we obtain the determination \(\alpha _\mathrm{dir}={({86.2}_{-4.0}^{+4.4} \cup {178.4}_{-5.1}^{+3.9})}^{\circ }\). We assess the uncertainties associated to the breakdown of the isospin hypothesis and the choice of the statistical framework in detail. We also determine the hadronic amplitudes (tree and penguin) describing the QCD dynamics involved in these decays, briefly comparing our results with theoretical expectations. For each observable of interest in the \(B\rightarrow \pi \pi \), \(B\rightarrow \rho \rho \) and \(B\rightarrow \rho \pi \) systems, we perform an indirect determination based on the constraints from all the other observables available and we discuss the compatibility between indirect and direct determinations. Finally, we review the impact of future improved measurements on the determination of \(\alpha \).  相似文献   

4.
In this paper, in order to probe the spectator-scattering and weak annihilation contributions in charmless \(B_s\rightarrow VV\) (where V stands for a light vector meson) decays, we perform the \(\chi ^2\)-analyses for the endpoint parameters within the QCD factorization framework, under the constraints from the measured \(\bar{B}_{s}\rightarrow \) \(\rho ^0\phi \), \(\phi K^{*0}\), \(\phi \phi \) and \(K^{*0}\bar{K}^{*0}\) decays. The fitted results indicate that the endpoint parameters in the factorizable and nonfactorizable annihilation topologies are non-universal, which is also favored by the charmless \(B\rightarrow PP\) and PV (where P stands for a light pseudo-scalar meson) decays observed in previous work. Moreover, the abnormal polarization fractions \(f_{L,\bot }(\bar{B}_{s}\rightarrow K^{*0}\bar{K}^{*0})=(20.1\pm 7.0)\%,(58.4\pm 8.5)\%\) measured by the LHCb collaboration can be reconciled through the weak annihilation corrections. However, the branching ratio of \(\bar{B}_{s}\rightarrow \phi K^{*0}\) decay exhibits a tension between the data and theoretical result, which dominates the contributions to \(\chi _\mathrm{min}^2\) in the fits. Using the fitted endpoint parameters, we update the theoretical results for the charmless \(B_s\rightarrow VV\) decays, which will be further tested by the LHCb and Belle-II experiments in the near future.  相似文献   

5.
The \(B\rightarrow D\) transition form factor (TFF) \(f^{B\rightarrow D}_+(q^2)\) is determined mainly by the D-meson leading-twist distribution amplitude (DA) , \(\phi _{2;D}\), if the proper chiral current correlation function is adopted within the light-cone QCD sum rules. It is therefore significant to make a comprehensive study of DA \(\phi _{2;D}\) and its impact on \(f^{B\rightarrow D}_+(q^2)\). In this paper, we calculate the moments of \(\phi _{2;D}\) with the QCD sum rules under the framework of the background field theory. New sum rules for the leading-twist DA moments \(\left\langle \xi ^n\right\rangle _D\) up to fourth order and up to dimension-six condensates are presented. At the scale \(\mu = 2 \,\mathrm{GeV}\), the values of the first four moments are: \(\left\langle \xi ^1\right\rangle _D = -0.418^{+0.021}_{-0.022}\), \(\left\langle \xi ^2\right\rangle _D = 0.289^{+0.023}_{-0.022}\), \(\left\langle \xi ^3\right\rangle _D = -0.178 \pm 0.010\) and \(\left\langle \xi ^4\right\rangle _D = 0.142^{+0.013}_{-0.012}\). Basing on the values of \(\left\langle \xi ^n\right\rangle _D(n=1,2,3,4)\), a better model of \(\phi _{2;D}\) is constructed. Applying this model for the TFF \(f^{B\rightarrow D}_+(q^2)\) under the light cone sum rules, we obtain \(f^{B\rightarrow D}_+(0) = 0.673^{+0.038}_{-0.041}\) and \(f^{B\rightarrow D}_+(q^2_{\mathrm{max}}) = 1.117^{+0.051}_{-0.054}\). The uncertainty of \(f^{B\rightarrow D}_+(q^2)\) from \(\phi _{2;D}\) is estimated and we find its impact should be taken into account, especially in low and central energy region. The branching ratio \(\mathcal {B}(B\rightarrow Dl\bar{\nu }_l)\) is calculated, which is consistent with experimental data.  相似文献   

6.
We have performed calculations for the nonleptonic \(\Xi _b^- \rightarrow \pi ^- \ \Xi _c^0 (2790) \left( J=\frac{1}{2}\right) \) and \(\Xi _b^- \rightarrow \pi ^- \ \Xi _c^0 (2815) \left( J=\frac{3}{2}\right) \) decays and the same reactions replacing the \(\pi ^-\) by a \(D_s^-\). At the same time we have also evaluated the semileptonic rates for \(\Xi _b^- \rightarrow \bar{\nu }_l l \ \Xi _c^0 (2790)\) and \(\Xi _b^- \rightarrow \bar{\nu }_l l \ \Xi _c^0 (2815)\). We look at the reactions from the perspective that the \(\Xi _c^0 (2790)\) and \(\Xi _c^0 (2815)\) resonances are dynamically generated from the pseudoscalar–baryon and vector–baryon interactions. We evaluate ratios of the rates of these reactions and make predictions that can be tested in future experiments. We also find that the results are rather sensitive to the coupling of the \(\Xi _c^*\) resonances to the \(D^* \Sigma \) and \(D^* \Lambda \) components.  相似文献   

7.
We investigate the following questions: Given a measure \(\mu _\Lambda \) on configurations on a subset \(\Lambda \) of a lattice \(\mathbb {L}\), where a configuration is an element of \(\Omega ^\Lambda \) for some fixed set \(\Omega \), does there exist a measure \(\mu \) on configurations on all of \(\mathbb {L}\), invariant under some specified symmetry group of \(\mathbb {L}\), such that \(\mu _\Lambda \) is its marginal on configurations on \(\Lambda \)? When the answer is yes, what are the properties, e.g., the entropies, of such measures? Our primary focus is the case in which \(\mathbb {L}=\mathbb {Z}^d\) and the symmetries are the translations. For the case in which \(\Lambda \) is an interval in \(\mathbb {Z}\) we give a simple necessary and sufficient condition, local translation invariance (LTI), for extendibility. For LTI measures we construct extensions having maximal entropy, which we show are Gibbs measures; this construction extends to the case in which \(\mathbb {L}\) is the Bethe lattice. On \(\mathbb {Z}\) we also consider extensions supported on periodic configurations, which are analyzed using de Bruijn graphs and which include the extensions with minimal entropy. When \(\Lambda \subset \mathbb {Z}\) is not an interval, or when \(\Lambda \subset \mathbb {Z}^d\) with \(d>1\), the LTI condition is necessary but not sufficient for extendibility. For \(\mathbb {Z}^d\) with \(d>1\), extendibility is in some sense undecidable.  相似文献   

8.
We study the constraints of the generic two-Higgs-doublet model (2HDM) type-III and the impacts of the new Yukawa couplings. For comparisons, we revisit the analysis in the 2HDM type-II. To understand the influence of all involving free parameters and to realize their correlations, we employ a \(\chi \)-square fitting approach by including theoretical and experimental constraints, such as the S, T, and U oblique parameters, the production of standard model Higgs and its decay to \(\gamma \gamma \), \(WW^*/ZZ^*\), \(\tau ^+\tau ^-\), etc. The errors of the analysis are taken at 68, 95.5, and \(99.7~\%\) confidence levels. Due to the new Yukawa couplings being associated with \(\cos (\beta -\alpha )\) and \(\sin (\beta -\alpha )\), we find that the allowed regions for \(\sin \alpha \) and \(\tan \beta \) in the type-III model can be broader when the dictated parameter \(\chi _F\) is positive; however, for negative \(\chi _F\), the limits are stricter than those in the type-II model. By using the constrained parameters, we find that the deviation from the SM in \(h\rightarrow Z\gamma \) can be of \(\mathcal{O}(10~\%)\). Additionally, we also study the top-quark flavor-changing processes induced at the tree level in the type-III model and find that when all current experimental data are considered, we get \(Br(t\rightarrow c(h, H) )< 10^{-3}\) for \(m_h=125.36\) and \(m_H=150\) GeV, and \(Br(t\rightarrow cA)\) slightly exceeds \(10^{-3}\) for \(m_A =130\) GeV.  相似文献   

9.
The three-body decays \(B^0_s \rightarrow \psi (2S,3S) \pi ^+ \pi ^-\) are studied based on the perturbative QCD approach. With the help of the nonperturbative two-pion distribution amplitudes, the analysis is simplified into the quasi-two-body processes. Besides the traditional factorizable and nonfactorizable diagrams at the leading order, the next-to-leading order vertex corrections are also included to cancel the scale dependence. The \(f_0(980)\), \(f_0(1500)\) resonance contributions as well as the nonresonant contributions are taken into account using the presently known \(\pi \pi \) time-like scalar form factor for the \(s\bar{s}\) component. It is found that the predicted \(B^0_s \rightarrow \psi (2S) \pi ^+ \pi ^-\) decay spectra in the pion pair invariant mass shows a similar behavior as the experiment. The calculated S-wave contributions to the branching ratio of \(B^0_s \rightarrow \psi (2S) \pi ^+ \pi ^-\) is \(6.0\times 10^{-5}\), which is in agreement with the LHCb data \(\mathcal {B}(B^0_s \rightarrow \psi (2S) \pi ^+ \pi ^-)=(7.2\pm 1.2)\times 10^{-5} \) within errors. The estimate of \(\mathcal {B}(B^0_s \rightarrow \psi (3S) \pi ^+ \pi ^-)\) can reach the order of \(10^{-5}\), pending the corresponding measurements.  相似文献   

10.
We present a microscopic derivation of the two-dimensional focusing cubic nonlinear Schrödinger equation starting from an interacting N-particle system of Bosons. The interaction potential we consider is given by \(W_\beta (x)=N^{-1+2 \beta }W(N^\beta x)\) for some spherically symmetric and compactly supported potential \(W \in L^\infty ({\mathbb {R}}^2, {\mathbb {R}})\). The class of initial wave functions is chosen such that the variance in energy is small. Furthermore, we assume that the Hamiltonian \( H_{W_\beta , t}=-\sum _{j=1}^N \Delta _j+\sum _{1\le j< k\le N} W_\beta (x_j-x_k) +\sum _{j=1}^N A_t(x_j)\) fulfills stability of second kind, that is \( H_{W_\beta , t} \ge -\,CN\). We then prove the convergence of the reduced density matrix corresponding to the exact time evolution to the projector onto the solution of the corresponding nonlinear Schrödinger equation in either Sobolev trace norm, if \(\Vert A_t\Vert _p < \infty \) for some \(p>2\), or in trace norm, for more general external potentials. For trapping potentials of the form \(A(x)=C |x|^s\; , C>0\), the condition \( H_{W_\beta , t} \ge -\,CN\) can be fulfilled for a certain class of interactions \(W_\beta \), for all \(0< \beta < \frac{s+1}{s+2}\), see Lewin et al. (Proc Am Math Soc 145:2441–2454, 2017).  相似文献   

11.
The main purpose of this paper is to introduce and establish basic results of a natural extension of the classical Boolean percolation model (also known as the Gilbert disc model). We replace the balls of that model by a positive non-increasing attenuation function \(l:(0,\infty ) \rightarrow [0,\infty )\) to create the random field \(\Psi (y)=\sum _{x\in \eta }l(|x-y|),\) where \(\eta \) is a homogeneous Poisson process in \({\mathbb {R}}^d.\) The field \(\Psi \) is then a random potential field with infinite range dependencies whenever the support of the function l is unbounded. In particular, we study the level sets \(\Psi _{\ge h}(y)\) containing the points \(y\in {\mathbb {R}}^d\) such that \(\Psi (y)\ge h.\) In the case where l has unbounded support, we give, for any \(d\ge 2,\) a necessary and sufficient condition on l for \(\Psi _{\ge h}(y)\) to have a percolative phase transition as a function of h. We also prove that when l is continuous then so is \(\Psi \) almost surely. Moreover, in this case and for \(d=2,\) we prove uniqueness of the infinite component of \(\Psi _{\ge h}\) when such exists, and we also show that the so-called percolation function is continuous below the critical value \(h_c\).  相似文献   

12.
The spin density matrix of the \(\omega \) has been determined for the reaction \({\bar{p}p}\,\rightarrow \,\omega \pi ^0\) with unpolarized in-flight data measured by the Crystal Barrel LEAR experiment at CERN. The two main decay modes of the \(\omega \) into \(\pi ^0 \gamma \) and \(\pi ^+ \pi ^- \pi ^0\) have been separately analyzed for various \({\bar{p}}\)momenta between 600 and 1940 MeV/c. The results obtained with the usual method by extracting the matrix elements via the \(\omega \) decay angular distributions and with the more sophisticated method via a full partial wave analysis are in good agreement. A strong spin alignment of the \(\omega \) is clearly visible in this energy regime and all individual spin density matrix elements exhibit an oscillatory dependence on the production angle. In addition, the largest contributing orbital angular momentum of the \({\bar{p}p~}\)system has been identified for the different beam momenta. It increases from \(L^{max}_{{\bar{p}p~}}\) \(=\) 2 at 600 MeV/c to \(L^{max}_{{\bar{p}p~}}\) \(=\) 5 at 1940 MeV/c.  相似文献   

13.
14.
We perform a likelihood analysis of the minimal anomaly-mediated supersymmetry-breaking (mAMSB) model using constraints from cosmology and accelerator experiments. We find that either a wino-like or a Higgsino-like neutralino LSP, \(\tilde{\chi }^0_{1}\), may provide the cold dark matter (DM), both with similar likelihoods. The upper limit on the DM density from Planck and other experiments enforces \(m_{\tilde{\chi }^0_{1}} \lesssim 3 \,\, \mathrm {TeV}\) after the inclusion of Sommerfeld enhancement in its annihilations. If most of the cold DM density is provided by the \(\tilde{\chi }^0_{1}\), the measured value of the Higgs mass favours a limited range of \(\tan \beta \sim 5\) (and also for \(\tan \beta \sim 45\) if \(\mu > 0\)) but the scalar mass \(m_0\) is poorly constrained. In the wino-LSP case, \(m_{3/2}\) is constrained to about \(900\,\, \mathrm {TeV}\) and \(m_{\tilde{\chi }^0_{1}}\) to \(2.9\pm 0.1\,\, \mathrm {TeV}\), whereas in the Higgsino-LSP case \(m_{3/2}\) has just a lower limit \(\gtrsim 650\,\, \mathrm {TeV}\) (\(\gtrsim 480\,\, \mathrm {TeV}\)) and \(m_{\tilde{\chi }^0_{1}}\) is constrained to \(1.12 ~(1.13) \pm 0.02\,\, \mathrm {TeV}\) in the \(\mu >0\) (\(\mu <0\)) scenario. In neither case can the anomalous magnetic moment of the muon, \((g-2)_\mu \), be improved significantly relative to its Standard Model (SM) value, nor do flavour measurements constrain the model significantly, and there are poor prospects for discovering supersymmetric particles at the LHC, though there are some prospects for direct DM detection. On the other hand, if the \(\tilde{\chi }^0_{1}\) contributes only a fraction of the cold DM density, future LHC Open image in new window -based searches for gluinos, squarks and heavier chargino and neutralino states as well as disappearing track searches in the wino-like LSP region will be relevant, and interference effects enable \(\mathrm{BR}(B_{s, d} \rightarrow \mu ^+\mu ^-)\) to agree with the data better than in the SM in the case of wino-like DM with \(\mu > 0\).  相似文献   

15.
O. Azzolini  M. T. Barrera  J. W. Beeman  F. Bellini  M. Beretta  M. Biassoni  E. Bossio  C. Brofferio  C. Bucci  L. Canonica  S. Capelli  L. Cardani  P. Carniti  N. Casali  L. Cassina  M. Clemenza  O. Cremonesi  A. Cruciani  A. D’Addabbo  I. Dafinei  S. Di Domizio  F. Ferroni  L. Gironi  A. Giuliani  P. Gorla  C. Gotti  G. Keppel  M. Martinez  S. Morganti  S. Nagorny  M. Nastasi  S. Nisi  C. Nones  D. Orlandi  L. Pagnanini  M. Pallavicini  V. Palmieri  L. Pattavina  M. Pavan  G. Pessina  V. Pettinacci  S. Pirro  S. Pozzi  E. Previtali  A. Puiu  C. Rusconi  K. Schäffner  C. Tomei  M. Vignati  A. Zolotarova 《The European Physical Journal C - Particles and Fields》2018,78(11):888
The CUPID-0 experiment searches for double beta decay using cryogenic calorimeters with double (heat and light) read-out. The detector, consisting of 24 ZnSe crystals 95\(\%\) enriched in \(^{82}\)Se and two natural ZnSe crystals, started data-taking in 2017 at Laboratori Nazionali del Gran Sasso. We present the search for the neutrino-less double beta decay of \(^{82}\)Se into the 0\(_1^+\), 2\(_1^+\) and 2\(_2^+\) excited states of \(^{82}\)Kr with an exposure of 5.74 kg\(\cdot \)yr (2.24\(\times \)10\(^{25}\) emitters\(\cdot \)yr). We found no evidence of the decays and set the most stringent limits on the widths of these processes: \(\varGamma \)(\(^{82}\)Se \(\rightarrow ^{82}\)Kr\(_{0_1^+}\))8.55\(\times \)10\(^{-24}\) yr\(^{-1}\), \(\varGamma \) (\(^{82}\) Se \(\rightarrow ^{82}\) Kr \(_{2_1^+}\))\(\,{<}\,6.25 \,{\times }\,10^{-24}\) yr\(^{-1}\), \(\varGamma \)(\(^{82}\)Se \(\rightarrow ^{82}\)Kr\(_{2_2^+}\))8.25\(\times \)10\(^{-24}\) yr\(^{-1}\) (90\(\%\) credible interval).  相似文献   

16.
We consider the X(3872) resonance as a \(J^\mathrm{{PC}}=1^{++}\) \(D\bar{D}^*\) hadronic molecule. According to heavy quark spin symmetry, there will exist a partner with quantum numbers \(2^{++}\), \(X_{2}\), which would be a \(D^*\bar{D}^*\) loosely bound state. The \(X_{2}\) is expected to decay dominantly into \(D\bar{D}\), \(D\bar{D}^*\) and \(\bar{D} D^*\) in d-wave. In this work, we calculate the decay widths of the \(X_{2}\) resonance into the above channels, as well as those of its bottom partner, \(X_{b2}\), the mass of which comes from assuming heavy flavor symmetry for the contact terms. We find partial widths of the \(X_{2}\) and \(X_{b2}\) of the order of a few MeV. Finally, we also study the radiative \(X_2\rightarrow D\bar{D}^{*}\gamma \) and \(X_{b2} \rightarrow \bar{B} B^{*}\gamma \) decays. These decay modes are more sensitive to the long-distance structure of the resonances and to the \(D\bar{D}^{*}\) or \(B\bar{B}^{*}\) final state interaction.  相似文献   

17.
We use the Fourier based Gabetta–Toscani–Wennberg metric \(d_2\) to study the rate of convergence to equilibrium for the Kac model in 1 dimension. We take the initial velocity distribution of the particles to be a Borel probability measure \(\mu \) on \(\mathbb {R}^n\) that is symmetric in all its variables, has mean \(\vec {0}\) and finite second moment. Let \(\mu _t(dv)\) denote the Kac-evolved distribution at time t, and let \(R_\mu \) be the angular average of \(\mu \). We give an upper bound to \(d_2(\mu _t, R_\mu )\) of the form \(\min \left\{ B e^{-\frac{4 \lambda _1}{n+3}t}, d_2(\mu ,R_\mu )\right\} ,\) where \(\lambda _1 = \frac{n+2}{2(n-1)}\) is the gap of the Kac model in \(L^2\) and B depends only on the second moment of \(\mu \). We also construct a family of Schwartz probability densities \(\{f_0^{(n)}: \mathbb {R}^n\rightarrow \mathbb {R}\}\) with finite second moments that shows practically no decrease in \(d_2(f_0(t), R_{f_0})\) for time at least \(\frac{1}{2\lambda }\) with \(\lambda \) the rate of the Kac operator. We also present a propagation of chaos result for the partially thermostated Kac model in Tossounian and Vaidyanathan (J Math Phys 56(8):083301, 2015).  相似文献   

18.
Quantum analogue of stabilised forced oscillations around an unstable equilibrium position is explored by solving the non-stationary Schrödinger equation (NSE) of the inverted harmonic oscillator (IHO) driven periodically by spatial uniform field of frequency \(\Omega \), amplitude \(F_{0}\) and phase \(\phi \), i.e. the system with the Hamiltonian of \(\hat{{H}}=(\hat{{p}}^{2}/2m)-(m\omega ^{2}x^{2}/2)-F_0 x\sin \) \(\left( {\Omega t+\phi } \right) \). The NSE has been solved both analytically and numerically by Maple 15 in dimensionless variables \(\xi = x\sqrt{m\omega /\hbar }\hbox {, }f_0 =F_0 /\omega \sqrt{\hbar m\omega }\) and \(\tau =\omega t\). The initial condition (IC) has been specified by the wave function (w.f.) of a generalised Gaussian type which suits well the corresponding quantum IC operator. The solution obtained demonstrates the non-monotonous behaviour of the coordinate spreading \(\sigma \left( \tau \right) \hbox { =}\sqrt{\big ( {\overline{\Delta \xi ^{2}\big ( \tau \big )} } \big )}\) which decreases first from quite macroscopic values of \(\sigma _{0} =2^{12,\ldots ,25}\) to minimal one of \(\sim \!(1/\sqrt{2})\) at times \(\tau <\tau _0 =0.125\ln \!\left( {16\sigma _0^4 +1} \right) \) and then grows back unlimitedly. For certain phases \(\phi \) depending on the \(\Omega /\omega \) ratio and \(n=\log _2\!\sigma _0 \), the mass centre of the packet \(\xi _{\mathrm {av}}( \tau )= \overline{\hat{{x}}(\tau )} \cdot \sqrt{m\omega /\hbar }\) delays approximately two natural ‘periods’ \(\sim \!(4\pi /\omega )\) in the area of the stationary point and then escapes to ‘\(+\)’ or ‘?’ infinity in a bifurcating way.  For ‘resonant’ \(\Omega =\omega \), the bifurcation phases \(\phi \) fit well with the regression formula of Fermi–Dirac type of argument n with their asymptotic \(\phi ( {\Omega ,n\rightarrow \infty } )\) obeying the classical formula \(\phi _{\mathrm {cl}} ( \Omega )=-\hbox {arctg} \, \Omega \) for initial energy \(E = 0\) in the wide range of \(\Omega =2^{-4},...,2^{7}\).  相似文献   

19.
It is shown that the deterministic infinite trigonometric products
$$\begin{aligned} \prod _{n\in \mathbb {N}}\left[ 1- p +p\cos \left( \textstyle n^{-s}_{_{}}t\right) \right] =: {\text{ Cl }_{p;s}^{}}(t) \end{aligned}$$
with parameters \( p\in (0,1]\ \& \ s>\frac{1}{2}\), and variable \(t\in \mathbb {R}\), are inverse Fourier transforms of the probability distributions for certain random series \(\Omega _{p}^\zeta (s)\) taking values in the real \(\omega \) line; i.e. the \({\text{ Cl }_{p;s}^{}}(t)\) are characteristic functions of the \(\Omega _{p}^\zeta (s)\). The special case \(p=1=s\) yields the familiar random harmonic series, while in general \(\Omega _{p}^\zeta (s)\) is a “random Riemann-\(\zeta \) function,” a notion which will be explained and illustrated—and connected to the Riemann hypothesis. It will be shown that \(\Omega _{p}^\zeta (s)\) is a very regular random variable, having a probability density function (PDF) on the \(\omega \) line which is a Schwartz function. More precisely, an elementary proof is given that there exists some \(K_{p;s}^{}>0\), and a function \(F_{p;s}^{}(|t|)\) bounded by \(|F_{p;s}^{}(|t|)|\!\le \! \exp \big (K_{p;s}^{} |t|^{1/(s+1)})\), and \(C_{p;s}^{}\!:=\!-\frac{1}{s}\int _0^\infty \ln |{1-p+p\cos \xi }|\frac{1}{\xi ^{1+1/s}}\mathrm{{d}}\xi \), such that
$$\begin{aligned} \forall \,t\in \mathbb {R}:\quad {\text{ Cl }_{p;s}^{}}(t) = \exp \bigl ({- C_{p;s}^{} \,|t|^{1/s}\bigr )F_{p;s}^{}(|t|)}; \end{aligned}$$
the regularity of \(\Omega _{p}^\zeta (s)\) follows. Incidentally, this theorem confirms a surmise by Benoit Cloitre, that \(\ln {\text{ Cl }_{{{1}/{3}};2}^{}}(t) \sim -C\sqrt{t}\; \left( t\rightarrow \infty \right) \) for some \(C>0\). Graphical evidence suggests that \({\text{ Cl }_{{{1}/{3}};2}^{}}(t)\) is an empirically unpredictable (chaotic) function of t. This is reflected in the rich structure of the pertinent PDF (the Fourier transform of \({\text{ Cl }_{{{1}/{3}};2}^{}}\)), and illustrated by random sampling of the Riemann-\(\zeta \) walks, whose branching rules allow the build-up of fractal-like structures.
  相似文献   

20.
Radiatively-driven natural SUSY (RNS) models enjoy electroweak naturalness at the 10% level while respecting LHC sparticle and Higgs mass constraints. Gluino and top-squark masses can range up to several TeV (with other squarks even heavier) but a set of light Higgsinos are required with mass not too far above \(m_h\sim 125\) GeV. Within the RNS framework, gluinos dominantly decay via \(\tilde{g}\rightarrow t\tilde{t}_1^{*},\ \bar{t}\tilde{t}_1 \rightarrow t\bar{t}\widetilde{Z}_{1,2}\) or \(t\bar{b}\widetilde{W}_1^-+c.c.\), where the decay products of the higgsino-like \(\widetilde{W}_1\) and \(\widetilde{Z}_2\) are very soft. Gluino pair production is, therefore, signaled by events with up to four hard b-jets and large \(\not \!\!{E_T}\). We devise a set of cuts to isolate a relatively pure gluino sample at the (high-luminosity) LHC and show that in the RNS model with very heavy squarks, the gluino signal will be accessible for \(m_{\tilde{g}} < 2400 \ (2800)\) GeV for an integrated luminosity of 300 (3000) fb\(^{-1}\). We also show that the measurement of the rate of gluino events in the clean sample mentioned above allows for a determination of \(m_{\tilde{g}}\) with a statistical precision of 2–5% (depending on the integrated luminosity and the gluino mass) over the range of gluino masses where a 5\(\sigma \) discovery is possible at the LHC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号